

Language Reference

Hazırlayan:

Fazıl Demir

elobilgi.com

V1 - Nisan-2018

Kaynak:

https://www.arduino.cc/reference/en/

I

Arduino

Language Reference

Arduino programming language can be divided in three main parts: structure, values

(variables and constants), and functions.

Structure

The elements of Arduino (C++) code.

Sketch

setup() - 1

loop() - 1

Control Structures

if -2

if...else -2

for -4

switch case -5

while -6

do... while -6

break -7

continue -7

return -8

goto -9

Further Syntax

; (semicolon) -9

{} (curly braces) -10

// (single line comment) -11

/* */ (multi-line comment) -11

#define -12

#include -12

Arithmetic Operators

= (assignment operator) -13

+ (addition) -14

- (subtraction) -15

* (multiplication) -15

/ (division) -16

% (modulo) -17

Comparison Operators

== (equal to) -18

!= (not equal to) -18

< (less than) -19

> (greater than) -19

<= (less than or equal to) -20

>= (greater than or equal to) -20

Boolean Operators

&& (logical and) -21

|| (logical or) -21

! (logical not) -22

Pointer Access Operators

* dereference operator -22

& reference operator -23

https://www.arduino.cc/en/Reference/Else
https://www.arduino.cc/en/Reference/Arithmetic
https://www.arduino.cc/en/Reference/If
https://www.arduino.cc/en/Reference/If
https://www.arduino.cc/en/Reference/Include
https://www.arduino.cc/en/Reference/If
https://www.arduino.cc/en/Reference/Pointer
https://www.arduino.cc/en/Reference/Boolean
https://www.arduino.cc/en/Reference/Arithmetic
https://www.arduino.cc/en/Reference/Comments
https://www.arduino.cc/en/Reference/Arithmetic
https://www.arduino.cc/en/Reference/Boolean
https://www.arduino.cc/en/Reference/Comments
https://www.arduino.cc/en/Reference/SemiColon
https://www.arduino.cc/en/Reference/If
https://www.arduino.cc/en/Reference/If
https://www.arduino.cc/en/Reference/While
https://www.arduino.cc/en/Reference/Setup
https://www.arduino.cc/en/Reference/Define
https://www.arduino.cc/en/Reference/If
https://www.arduino.cc/en/Reference/Continue
https://www.arduino.cc/en/Reference/Goto
https://www.arduino.cc/en/Reference/Assignment
https://www.arduino.cc/en/Reference/For
https://www.arduino.cc/en/Reference/Pointer
https://www.arduino.cc/en/Reference/DoWhile
https://www.arduino.cc/en/Reference/SwitchCase
https://www.arduino.cc/en/Reference/Break
https://www.arduino.cc/en/Reference/Loop
https://www.arduino.cc/en/Reference/Modulo
https://www.arduino.cc/en/Reference/Boolean
https://www.arduino.cc/en/Reference/If
https://www.arduino.cc/en/Reference/Return
https://www.arduino.cc/en/Reference/Braces
https://www.arduino.cc/en/Reference/Arithmetic

II

Bitwise Operators

& (bitwise and) -23

| (bitwise or) -24

^ (bitwise xor) -25

~ (bitwise not) -25

<< (bitshift left) -26

>> (bitshift right) -27

Compound Operators

++ (increment) -28

-- (decrement) -29

+= (compound addition) -29

-= (compound subtraction) -30

*= (compound multiplication) -30

/= (compound division) -31

%= (compound modulo)

&= (compound bitwise and) -31

|= (compound bitwise or) -32

Variables -33
Arduino data types and constants.

Constants

HIGH | LOW -34

INPUT | OUTPUT | INPUT_PULLUP -35

LED_BUILTIN -36

true | false

integer constants -36

floating point constants -37

Data Types

void -38

boolean -38

bool-39

char -39

unsigned char -40

byte -40

int -40

unsigned int -41

word -42

long -42

unsigned long -43

short -43

float -44

double -45

string - char array -45

String() - object -47

array -48

Conversion

char() -50

byte() -50

int() -50

word() -51

long() -51

float() -51

Variable Scope & Qualifiers

variable scope -52

static -53

volatile -54

const -55

Utilities

sizeof() -56

PROGMEM -57

https://www.arduino.cc/en/Reference/UnsignedLong
https://www.arduino.cc/en/Reference/Bitshift
https://www.arduino.cc/en/Reference/Int
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Const
https://www.arduino.cc/en/Reference/Word
https://www.arduino.cc/en/Reference/Char
https://www.arduino.cc/en/Reference/Bitshift
https://www.arduino.cc/en/Reference/BitwiseAnd
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Increment
https://www.arduino.cc/en/Reference/Void
https://www.arduino.cc/en/Reference/Short
https://www.arduino.cc/en/Reference/PROGMEM
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/IntegerConstants
https://www.arduino.cc/en/Reference/Volatile
https://www.arduino.cc/en/Reference/BitwiseAnd
https://www.arduino.cc/en/Reference/Array
https://www.arduino.cc/en/Reference/BitwiseCompoundOr
https://www.arduino.cc/en/Reference/IncrementCompound
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/IncrementCompound
https://www.arduino.cc/en/Reference/Scope
https://www.arduino.cc/en/Reference/StringObject
https://www.arduino.cc/en/Reference/Increment
https://www.arduino.cc/en/Reference/String
https://www.arduino.cc/en/Reference/Byte
https://www.arduino.cc/en/Reference/FloatCast
https://www.arduino.cc/en/Reference/IntCast
https://www.arduino.cc/en/Reference/IncrementCompound
https://www.arduino.cc/en/Reference/Float
https://www.arduino.cc/en/Reference/UnsignedInt
https://www.arduino.cc/en/Reference/ByteCast
https://www.arduino.cc/en/Reference/Static
https://www.arduino.cc/en/Reference/BitwiseCompoundAnd
https://www.arduino.cc/en/Reference/CharCast
https://www.arduino.cc/en/Reference/Fpconstants
https://www.arduino.cc/en/Reference/UnsignedChar
https://www.arduino.cc/en/Reference/BitwiseXorNot
https://www.arduino.cc/en/Reference/Sizeof
https://www.arduino.cc/en/Reference/LongCast
https://www.arduino.cc/en/Reference/Long
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Double
https://www.arduino.cc/en/Reference/BooleanVariables
https://www.arduino.cc/en/Reference/IncrementCompound
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/IncrementCompound
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/WordCast
https://www.arduino.cc/en/Reference/BitwiseAnd

III

Functions

For controlling the Arduino board and performing computations.

Digital I/O

pinMode() -60

digitalWrite() -61

digitalRead() -62

Analog I/O

analogReference() -63

analogRead() -64

analogWrite() – PWM-65

Zero, Due & MKR Family

analogReadResolution() -67

analogWriteResolution() -69

Advanced I/O

tone() -71

noTone() -71

shiftOut() -72

shiftIn() -74

pulseIn() -74

pulseInLong()-75

Time

millis() -76

micros() -77

delay() -78

delayMicroseconds()-79

Math

min() -80

max() -81

abs() -81

constrain() -85

map() -83

pow() -84

sqrt()-84

sq()-85

Trigonometry

sin() -85

cos() -96

tan() -86

Characters

isAlphaNumeric() -86

isAlpha() -87

isAscii() -88

isWhitespace() -88

isControl() -89

isDigit() -89

isGraph() -90

isLowerCase() -91

isPrintable() -91

isPunct() -92

isSpace() -93

isUpperCase() -93

isHexadecimalDigit() -94

https://www.arduino.cc/en/Reference/DigitalWrite
https://www.arduino.cc/en/Reference/Sin
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/Pow
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/NoTone
https://www.arduino.cc/en/Reference/AnalogReadResolution
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/AnalogWrite
https://www.arduino.cc/en/Reference/Min
https://www.arduino.cc/en/Reference/Cos
https://www.arduino.cc/en/Reference/Micros
https://www.arduino.cc/en/Reference/PinMode
https://www.arduino.cc/en/Reference/Map
https://www.arduino.cc/en/Reference/DigitalRead
https://www.arduino.cc/en/Reference/DelayMicroseconds
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/PulseIn
https://www.arduino.cc/en/Reference/Delay
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/Max
https://www.arduino.cc/en/Reference/Millis
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/ShiftIn
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/CharacterAnalysis
http://arduino.cc/en/Reference/FunctionDeclaration
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/Tone
https://www.arduino.cc/en/Reference/AnalogWriteResolution
https://www.arduino.cc/en/Reference/ShiftOut
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/Abs
https://www.arduino.cc/en/Reference/AnalogReference
https://www.arduino.cc/en/Reference/AnalogRead
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/Sqrt
https://www.arduino.cc/en/Reference/CharacterAnalysis
https://www.arduino.cc/en/Reference/Constrain
https://www.arduino.cc/en/Reference/Tan

IV

Random Numbers

randomSeed() -94

random() -95

Bits and Bytes

lowByte() -96

highByte() -97

bitRead() -97

bitWrite() -98

bitSet() -98

bitClear() -98

bit() -99

External Interrupts

attachInterrupt() -99

detachInterrupt() -102

Interrupts

interrupts() -102

noInterrupts() -103

Communication

Serial -10

If (Serial) -105

available() -106

availableForWrite() -107

begin() -107

end() -109

find() -109

findUntil() -110

flush() -110

parseFloat() -111

parseInt() -111

peek() -112

print() -112

println() -114

read() -115

readBytes() -116

readBytesUntil() -116

setTimeout() -117

write() -117

serialEvent() -118

Stream -119

available() -122

read() -123

flush() -123

find() -124

findUntil() -124

peek() -125

readBytes() -125

readBytesUntil() -126

readString() -126

readStringUntil() -127

parseInt() -127

parseFloat() -128

setTimeout() -128s

https://www.arduino.cc/en/Reference/Random
https://www.arduino.cc/reference/en/language/functions/communication/serial/ifserial
https://www.arduino.cc/reference/en/language/functions/communication/serial/parsefloat
https://www.arduino.cc/en/Reference/DetachInterrupt
https://www.arduino.cc/reference/en/language/functions/communication/serial/readbytesuntil
https://www.arduino.cc/reference/en/language/functions/communication/serial/read
https://www.arduino.cc/en/Reference/AttachInterrupt
https://www.arduino.cc/en/Reference/Stream
https://www.arduino.cc/en/Reference/Serial
https://www.arduino.cc/reference/en/language/functions/communication/serial/find
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamfind
https://www.arduino.cc/en/Reference/Interrupts
https://www.arduino.cc/en/Reference/HighByte
https://www.arduino.cc/reference/en/language/functions/communication/serial/availableforwrite
https://www.arduino.cc/en/Reference/BitClear
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamreadbytes
https://www.arduino.cc/reference/en/language/functions/communication/serial/parseint
https://www.arduino.cc/reference/en/language/functions/communication/stream/streampeek
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamparsefloat
https://www.arduino.cc/reference/en/language/functions/communication/serial/end
https://www.arduino.cc/reference/en/language/functions/communication/serial/flush
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamsettimeout
https://www.arduino.cc/reference/en/language/functions/communication/serial/settimeout
https://www.arduino.cc/reference/en/language/functions/communication/serial/peek
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamreadbytesuntil
https://www.arduino.cc/en/Reference/NoInterrupts
https://www.arduino.cc/reference/en/language/functions/communication/serial/serialevent
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamread
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamreadstring
https://www.arduino.cc/en/Reference/BitSet
https://www.arduino.cc/reference/en/language/functions/communication/serial/println
https://www.arduino.cc/en/Reference/RandomSeed
https://www.arduino.cc/reference/en/language/functions/communication/serial/print
https://www.arduino.cc/reference/en/language/functions/communication/serial/available
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamparseint
https://www.arduino.cc/reference/en/language/functions/communication/serial/write
https://www.arduino.cc/en/Reference/Bit
https://www.arduino.cc/reference/en/language/functions/communication/serial/finduntil
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamfinduntil
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamreadstringuntil
https://www.arduino.cc/en/Reference/LowByte
https://www.arduino.cc/en/Reference/BitWrite
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamavailable
https://www.arduino.cc/reference/en/language/functions/communication/serial/readbytes
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamflush
https://www.arduino.cc/en/Reference/BitRead
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin

V

USB (32u4 based boards and Due/Zero

only)

Keyboard -129

Keyboard.begin() -129

Keyboard.end() -130

Keyboard.press() -131

Keyboard.print() -132

Keyboard.println() -133

Keyboard.release() -134

Keyboard.releaseAll() -135

Keyboard.write() -136

Mouse -137

Mouse.begin() -137

Mouse.click() -138

Mouse.end() -139

Mouse.move() -140

Mouse.press() -141

Mouse.release() -142

Mouse.isPressed() -143

https://www.arduino.cc/reference/en/language/functions/usb/mouse/mouseispressed
https://www.arduino.cc/en/Reference/MouseKeyboard
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardbegin
https://www.arduino.cc/en/Reference/MouseKeyboard
https://www.arduino.cc/reference/en/language/functions/usb/mouse/mousemove
https://www.arduino.cc/reference/en/language/functions/usb/mouse/mousepress
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardwrite
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardpress
https://www.arduino.cc/reference/en/language/functions/usb/mouse/mousebegin
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardprint
https://www.arduino.cc/reference/en/language/functions/usb/mouse/mouseclick
https://www.arduino.cc/reference/en/language/functions/usb/mouse/mouserelease
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardend
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardprintln
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardrelease
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardreleaseall
https://www.arduino.cc/reference/en/language/functions/usb/mouse/mouseend

1

Structure

setup() [Sketch]

Description

The setup() function is called when a sketch starts. Use it to initialize variables, pin modes, start

using libraries, etc. The setup() function will only run once, after each powerup or reset of the

Arduino board.

Example Code

int buttonPin = 3;

void setup()

{

 Serial.begin(9600);

 pinMode(buttonPin, INPUT);

}

void loop()

{

 // ...

}

loop() [Sketch]

Description

After creating a setup() function, which initializes and sets the initial values, the loop() function

does precisely what its name suggests, and loops consecutively, allowing your program to change

and respond. Use it to actively control the Arduino board.

Example Code

int buttonPin = 3;

// setup initializes serial and the button pin

void setup()

{

 Serial.begin(9600);

 pinMode(buttonPin, INPUT);

}

// loop checks the button pin each time,

// and will send serial if it is pressed

void loop()

{

 if (digitalRead(buttonPin) == HIGH)

 Serial.write('H');

 else

 Serial.write('L');

 delay(1000);

}

https://www.arduino.cc/reference/en/language/structure/sketch/setup

2

if...else [Control Structure]

Description

The if statement checks for a condition and executes the proceeding statement or set of statements

if the condition is 'true'.

Syntax

if (condition)

{

 //statement(s)

}

Parameters

condition: a boolean expression i.e., can be true or false

Example Code

The brackets may be omitted after an if statement. If this is done, the next line (defined by the

semicolon) becomes the only conditional statement.

if (x > 120) digitalWrite(LEDpin, HIGH);

if (x > 120)

digitalWrite(LEDpin, HIGH);

if (x > 120){ digitalWrite(LEDpin, HIGH); }

if (x > 120){

 digitalWrite(LEDpin1, HIGH);

 digitalWrite(LEDpin2, HIGH);

} // all are correct

Notes and Warnings

The statements being evaluated inside the parentheses require the use of one or more operators

shown below.

Comparison Operators:

x == y (x is equal to y)

x != y (x is not equal to y)

x < y (x is less than y)

x > y (x is greater than y)

x <= y (x is less than or equal to y)

x >= y (x is greater than or equal to y)

Beware of accidentally using the single equal sign (e.g. if (x = 10)). The single equal sign is the

assignment operator, and sets x to 10 (puts the value 10 into the variable x). Instead use the double

equal sign (e.g. if (x == 10)), which is the comparison operator, and tests whether x is equal to

10 or not. The latter statement is only true if x equals 10, but the former statement will always be

true.

3

This is because C evaluates the statement if (x=10) as follows: 10 is assigned to x (remember that

the single equal sign is the (assignment operator)), so x now contains 10. Then the 'if' conditional

evaluates 10, which always evaluates to TRUE, since any non-zero number evaluates to TRUE.

Consequently, if (x = 10) will always evaluate to TRUE, which is not the desired result when

using an 'if' statement. Additionally, the variable x will be set to 10, which is also not a desired

action.

else [Control Structure]

Description

The if…else allows greater control over the flow of code than the basic if statement, by allowing

multiple tests to be grouped together. An else clause (if at all exists) will be executed if the

condition in the if statement results in false. The else can proceed another if test, so that

multiple, mutually exclusive tests can be run at the same time.

Each test will proceed to the next one until a true test is encountered. When a true test is found, its

associated block of code is run, and the program then skips to the line following the entire if/else

construction. If no test proves to be true, the default else block is executed, if one is present, and

sets the default behavior.

Note that an else if block may be used with or without a terminating else block and vice versa.

An unlimited number of such else if branches is allowed.

Syntax

if (condition1)

{

 // do Thing A

}

else if (condition2)

{

 // do Thing B

}

else

{

 // do Thing C

}

Example Code

Below is an extract from a code for temperature sensor system

if (temperature >= 70)

{

 //Danger! Shut down the system

}

else if (temperature >= 60 && temperature < 70)

{

 //Warning! User attention required

}

else

{

 //Safe! Continue usual tasks...

}

http://arduino.cc/en/Reference/Assignment
https://www.arduino.cc/reference/en/language/structure/control-structure/if

4

for [Control Structure]

Description

The for statement is used to repeat a block of statements enclosed in curly braces. An increment

counter is usually used to increment and terminate the loop. The for statement is useful for any

repetitive operation, and is often used in combination with arrays to operate on collections of

data/pins.

Syntax

for (initialization; condition; increment) {

 //statement(s);

}

The initialization happens first and exactly once. Each time through the loop, the condition is

tested; if it’s true, the statement block, and the increment is executed, then the condition is tested

again. When the condition becomes false, the loop ends.

Example Code

// Dim an LED using a PWM pin

int PWMpin = 10; // LED in series with 470 ohm resistor on pin 10

void setup()

{

 // no setup needed

}

void loop()

{

 for (int i=0; i <= 255; i++){

 analogWrite(PWMpin, i);

 delay(10);

 }

}

Notes and Warnings

The C for loop is much more flexible than for loops found in some other computer languages,

including BASIC. Any or all of the three header elements may be omitted, although the semicolons

are required. Also the statements for initialization, condition, and increment can be any valid C

statements with unrelated variables, and use any C datatypes including floats. These types of

unusual for statements may provide solutions to some rare programming problems.

For example, using a multiplication in the increment line will generate a logarithmic progression:

for(int x = 2; x < 100; x = x * 1.5){

println(x);

}

Generates: 2,3,4,6,9,13,19,28,42,63,94

5

Another example, fade an LED up and down with one for loop:

void loop()

{

 int x = 1;

 for (int i = 0; i > -1; i = i + x){

 analogWrite(PWMpin, i);

 if (i == 255) x = -1; // switch direction at peak

 delay(10);

 }

}

switch...case [Control Structure]

Description

Like if statements, switch case controls the flow of programs by allowing programmers to specify

different code that should be executed in various conditions. In particular, a switch statement

compares the value of a variable to the values specified in case statements. When a case statement is

found whose value matches that of the variable, the code in that case statement is run.

The break keyword exits the switch statement, and is typically used at the end of each case. Without

a break statement, the switch statement will continue executing the following expressions ("falling-

through") until a break, or the end of the switch statement is reached.

Syntax

switch (var) {

 case label1:

 // statements

 break;

 case label2:

 // statements

 break;

 default:

 // statements

}

Parameters

var: a variable whose value to compare with various cases. Allowed data types: int, char

label1, label2: constants. Allowed data types: int, char

Returns

Nothing

https://www.arduino.cc/reference/en/language/structure/control-structure/switchcase
https://www.arduino.cc/reference/en/language/structure/control-structure/break
https://www.arduino.cc/reference/en/language/structure/control-structure/if

6

Example Code

 switch (var) {

 case 1:

 //do something when var equals 1

 break;

 case 2:

 //do something when var equals 2

 break;

 default:

 // if nothing else matches, do the default

 // default is optional

 break;

 }

while [Control Structure]

Description

A while loop will loop continuously, and infinitely, until the expression inside the parenthesis, ()

becomes false. Something must change the tested variable, or the while loop will never exit. This

could be in your code, such as an incremented variable, or an external condition, such as testing a

sensor.

Syntax

while(condition){

 // statement(s)

}

The condition is a boolean expression that evaluates to true or false.

Example Code

var = 0;

while(var < 200){

 // do something repetitive 200 times

 var++;

}

do...while [Control Structure]

Description

The do…while loop works in the same manner as the while loop, with the exception that the

condition is tested at the end of the loop, so the do loop will always run at least once.

https://www.arduino.cc/reference/en/language/structure/control-structure/while

7

Syntax

do

{

 // statement block

} while (condition);

The condition is a boolean expression that evaluates to true or false.

Example Code

do

{

 delay(50); // wait for sensors to stabilize

 x = readSensors(); // check the sensors

} while (x < 100);

break [Control Structure]

Description

break is used to exit from a for, while or do…while loop, bypassing the normal loop condition. It is

also used to exit from a switch case statement.

Example Code

In the following code, the control exits the for loop when the sensor value exceeds the threshold.

for (x = 0; x < 255; x ++)

{

 analogWrite(PWMpin, x);

 sens = analogRead(sensorPin);

 if (sens > threshold){ // bail out on sensor detect

 x = 0;

 break;

 }

 delay(50);

}

continue [Control Structure]

Description

The continue statement skips the rest of the current iteration of a loop (for, while, or do…while). It

continues by checking the conditional expression of the loop, and proceeding with any subsequent

iterations.

https://www.arduino.cc/reference/en/language/structure/control-structure/for
https://www.arduino.cc/reference/en/language/structure/control-structure/dowhile
https://www.arduino.cc/reference/en/language/structure/control-structure/while
https://www.arduino.cc/reference/en/language/structure/control-structure/for
https://www.arduino.cc/reference/en/language/structure/control-structure/switchcase
https://www.arduino.cc/reference/en/language/structure/control-structure/while
https://www.arduino.cc/reference/en/language/structure/control-structure/dowhile

8

Example Code

The following code writes the value of 0 to 255 to the PWMpin, but skips the values in the range of

41 to 119.

for (x = 0; x <= 255; x ++)

{

 if (x > 40 && x < 120){ // create jump in values

 continue;

 }

 analogWrite(PWMpin, x);

 delay(50);

}

return [Control Structure]

Description

Terminate a function and return a value from a function to the calling function, if desired.

Syntax

return;

return value; // both forms are valid

Parameters

`value': any variable or constant type

Example Code

A function to compare a sensor input to a threshold

 int checkSensor(){

 if (analogRead(0) > 400) {

 return 1;

 }

 else{

 return 0;

 }

}

The return keyword is handy to test a section of code without having to "comment out" large

sections of possibly buggy code.

void loop(){

// brilliant code idea to test here

return;

// the rest of a dysfunctional sketch here

// this code will never be executed

}

9

goto [Control Structure]

Description

Transfers program flow to a labeled point in the program

Syntax

label:

goto label; // sends program flow to the label

Example Code

for(byte r = 0; r < 255; r++){

 for(byte g = 255; g > -1; g--){

 for(byte b = 0; b < 255; b++){

 if (analogRead(0) > 250){ goto bailout;}

 // more statements ...

 }

 }

}

bailout:

Notes and Warnings

The use of goto is discouraged in C programming, and some authors of C programming books

claim that the goto statement is never necessary, but used judiciously, it can simplify certain

programs. The reason that many programmers frown upon the use of goto is that with the

unrestrained use of goto statements, it is easy to create a program with undefined program flow,

which can never be debugged.

With that said, there are instances where a goto statement can come in handy, and simplify coding.

One of these situations is to break out of deeply nested for loops, or if logic blocks, on a certain

condition.

; [Further Syntax]

Description

Used to end a statement.

Example Code

int a = 13;

Notes and Warnings

Forgetting to end a line in a semicolon will result in a compiler error. The error text may be

obvious, and refer to a missing semicolon, or it may not. If an impenetrable or seemingly illogical

https://www.arduino.cc/reference/en/language/structure/control-structure/for
https://www.arduino.cc/reference/en/language/structure/control-structure/if

10

compiler error comes up, one of the first things to check is a missing semicolon, in the immediate

vicinity, preceding the line at which the compiler complained.

{} [Further Syntax]

Description

Curly braces (also referred to as just "braces" or as "curly brackets") are a major part of the C

programming language. They are used in several different constructs, outlined below, and this can

sometimes be confusing for beginners.

An opening curly brace { must always be followed by a closing curly brace }. This is a condition

that is often referred to as the braces being balanced. The Arduino IDE (Integrated Development

Environment) includes a convenient feature to check the balance of curly braces. Just select a brace,

or even click the insertion point immediately following a brace, and its logical companion will be

highlighted.

Beginners programmers, and programmers coming to C from the BASIC language often find using

braces confusing or daunting. After all, the same curly braces replace the RETURN statement in a

subroutine (function), the ENDIF statement in a conditional and the NEXT statement in a FOR

loop.

Unbalanced braces can often lead to cryptic, impenetrable compiler errors that can sometimes be

hard to track down in a large program. Because of their varied usages, braces are also incredibly

important to the syntax of a program and moving a brace one or two lines will often dramatically

affect the meaning of a program.

Example Code

The main uses of curly braces are listed in the examples below.

Functions
void myfunction(datatype argument){

 statements(s)

}

Loops
while (boolean expression)

{

 statement(s)

}

do

{

 statement(s)

} while (boolean expression);

for (initialisation; termination condition; incrementing expr)

{

 statement(s)

}

Conditional Statements
if (boolean expression){

 statement(s)

}

else if (boolean expression){

 statement(s)

}else{

 statement(s)

}

11

// [Further Syntax]

Description

Comments are lines in the program that are used to inform yourself or others about the way the

program works. They are ignored by the compiler, and not exported to the processor, so they don’t

take up any space in the microcontroller’s flash memory. Comments' only purpose is to help you

understand (or remember), or to inform others about how your program works.

A single line comment begins with // (two adjacent slashes). This comment ends automatically at

the end of a line. whatever follows // till the end of a line will be ignored by the compiler.

Example Code

There are two different ways of marking a line as a comment:

// Pin 13 has an LED connected on most Arduino boards.

// give it a name:

int led = 13;

digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

Notes and Warnings

When experimenting with code, "commenting out" parts of your program is a convenient way to

remove lines that may be buggy. This leaves the lines in the code, but turns them into comments, so

the compiler just ignores them. This can be especially useful when trying to locate a problem, or

when a program refuses to compile and the compiler error is cryptic or unhelpful.

/* */ [Further Syntax]

Description

Comments are lines in the program that are used to inform yourself or others about the way the

program works. They are ignored by the compiler, and not exported to the processor, so they don’t

take up any space in the microcontroller’s flash memory. Comments' only purpose is to help you

understand (or remember), or to inform others about how your program works.

The beginning of a block comment or a multi-line comment is marked by the symbol /* and the

symbol */ marks its end. This type of a comment is called so as this can extend over more than one

line; once the compiler reads the /* it ignores whatever follows unitl it enounters a */.

12

Example Code

/* This is a valid comment */

/*

 Blink

 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.

 (Another valid comment)

*/

/*

 if (gwb == 0){ // single line comment is OK inside a multi-line comment

 x = 3; /* but not another multi-line comment - this is invalid */

 }

// don't forget the "closing" comment - they have to be balanced!

*/

Notes and Warnings

When experimenting with code, "commenting out" parts of your program is a convenient way to

remove lines that may be buggy. This leaves the lines in the code, but turns them into comments, so

the compiler just ignores them. This can be especially useful when trying to locate a problem, or

when a program refuses to compile and the compiler error is cryptic or unhelpful.

#define [Further Syntax]

Description

#define is a useful C component that allows the programmer to give a name to a constant value

before the program is compiled. Defined constants in arduino don’t take up any program memory

space on the chip. The compiler will replace references to these constants with the defined value at

compile time.

This can have some unwanted side effects though, if for example, a constant name that had been

#defined is included in some other constant or variable name. In that case the text would be

replaced by the #defined number (or text).

In general, the const keyword is preferred for defining constants and should be used instead of

#define.

Syntax

#define constantName value

Note that the # is necessary.

Example Code

#define ledPin 3

// The compiler will replace any mention of ledPin with the value 3 at compile

time.

https://www.arduino.cc/reference/en/language/variables/variable-scope--qualifiers/const

13

Notes and Warnings

There is no semicolon after the #define statement. If you include one, the compiler will throw

cryptic errors further down the page.

#define ledPin 3; // this is an error

Similarly, including an equal sign after the #define statement will also generate a cryptic compiler

error further down the page.

#define ledPin = 3 // this is also an error

#include [Further Syntax]

Description

#include is used to include outside libraries in your sketch. This gives the programmer access to a

large group of standard C libraries (groups of pre-made functions), and also libraries written

especially for Arduino.

The main reference page for AVR C libraries (AVR is a reference to the Atmel chips on which the

Arduino is based) is here.

Note that #include, similar to #define, has no semicolon terminator, and the compiler will yield

cryptic error messages if you add one.

Example Code

This example includes a library that is used to put data into the program space flash instead of ram.

This saves the ram space for dynamic memory needs and makes large lookup tables more practical.

#include <avr/pgmspace.h>

prog_uint16_t myConstants[] PROGMEM = {0, 21140, 702 , 9128, 0, 25764, 8456,

0,0,0,0,0,0,0,0,29810,8968,29762,29762,4500};

= [Arithmetic Operators]

Description

The single equal sign = in the C programming language is called the assignment operator. It has a

different meaning than in algebra class where it indicated an equation or equality. The assignment

operator tells the microcontroller to evaluate whatever value or expression is on the right side of the

equal sign, and store it in the variable to the left of the equal sign.

http://www.nongnu.org/avr-libc/user-manual/modules.html
https://www.arduino.cc/reference/en/language/structure/further-syntax/define

14

Example Code

int sensVal; // declare an integer variable named sensVal

sensVal = analogRead(0); // store the (digitized) input voltage at analog pin 0

in SensVal

Notes and Warnings

1. The variable on the left side of the assignment operator (= sign) needs to be able to hold

the value stored in it. If it is not large enough to hold a value, the value stored in the variable

will be incorrect.

2. Don’t confuse the assignment operator [=] (single equal sign) with the comparison operator

[==] (double equal signs), which evaluates whether two expressions are equal.

+ [Arithmetic Operators]

Description

Addition is one of the four primary arithmetic operations. The operator + (plus) operates on two

operands to produce the sum.

Syntax

sum = operand1 + operand2;

Parameters

sum : variable. Allowed data types: int, float, double, byte, short, long

operand1 : variable or constant. Allowed data types: int, float, double, byte, short, long

operand2 : variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

int a = 5, b = 10, c = 0;

c = a + b; // the variable 'c' gets a value of 15 after this statement is

executed

Notes and Warnings

1. The addition operation can overflow if the result is larger than that which can be stored in

the data type (e.g. adding 1 to an integer with the value 32,767 gives -32,768).

2. If one of the numbers (operands) are of the type float or of type double, floating point math

will be used for the calculation.

3. If the operands are of float / double data type and the variable that stores the sum is an

integer, then only the integral part is stored and the fractional part of the number is lost.

float a = 5.5, b = 6.6;

int c = 0;

c = a + b; // the variable 'c' stores a value of 12 only as opposed to the

expected sum of 12.1

15

- [Arithmetic Operators]

Description

Subtraction is one of the four primary arithmetic operations. The operator - (minus) operates on

two operands to produce the difference of the second from the first.

Syntax

difference = operand1 - operand2;

Parameters

difference : variable. Allowed data types: int, float, double, byte, short, long

operand1 : variable or constant. Allowed data types: int, float, double, byte, short, long

operand2 : variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

int a = 5, b = 10, c = 0;

c = a - b; // the variable 'c' gets a value of -5 after this statement is

executed

Notes and Warnings

1. The subtraction operation can overflow if the result is smaller than that which can be stored

in the data type (e.g. subtracting 1 from an integer with the value -32,768 gives 32,767).

2. If one of the numbers (operands) are of the type float or of type double, floating point math

will be used for the calculation.

3. If the operands are of float / double data type and the variable that stores the difference is an

integer, then only the integral part is stored and the fractional part of the number is lost.

float a = 5.5, b = 6.6;

int c = 0;

c = a - b; // the variable 'c' stores a value of -1 only as opposed to the

expected difference of -1.1

* [Arithmetic Operators]

Description

Multiplication is one of the four primary arithmetic operations. The operator * (asterisk) operates

on two operands to produce the product.

Syntax

product = operand1 * operand2;

16

Parameters

product : variable. Allowed data types: int, float, double, byte, short, long

operand1 : variable or constant. Allowed data types: int, float, double, byte, short, long

operand2 : variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

int a = 5, b = 10, c = 0;

c = a * b; // the variable 'c' gets a value of 50 after this statement is

executed

Notes and Warnings

1. The multiplication operation can overflow if the result is bigger than that which can be

stored in the data type.

2. If one of the numbers (operands) are of the type float or of type double, floating point math

will be used for the calculation.

3. If the operands are of float / double data type and the variable that stores the product is an

integer, then only the integral part is stored and the fractional part of the number is lost.

float a = 5.5, b = 6.6;

int c = 0;

c = a * b; // the variable 'c' stores a value of 36 only as opposed to the

expected product of 36.3

/ [Arithmetic Operators]

Description

Division is one of the four primary arithmetic operations. The operator / (slash) operates on two

operands to produce the result.

Syntax

result = numerator / denominator;

Parameters

result : variable. Allowed data types: int, float, double, byte, short, long

numerator : variable or constant. Allowed data types: int, float, double, byte, short, long

denominator : non zero variable or constant. Allowed data types: int, float, double, byte, short,

long

Example Code

int a = 50, b = 10, c = 0;

c = a / b; // the variable 'c' gets a value of 5 after this statement is

executed

Notes and Warnings

17

1. If one of the numbers (operands) are of the type float or of type double, floating point math

will be used for the calculation.

2. If the operands are of float / double data type and the variable that stores the sum is an

integer, then only the integral part is stored and the fractional part of the number is lost.

float a = 55.5, b = 6.6;

int c = 0;

c = a / b; // the variable 'c' stores a value of 8 only as opposed to the

expected result of 8.409

% [Arithmetic Operators]

Description

Modulo operation calculates the remainder when one integer is divided by another. It is useful for

keeping a variable within a particular range (e.g. the size of an array). The % (percent) symbol is

used to carry out modulo operation.

Syntax

remainder = dividend % divisor;

Parameters

remainder : variable. Allowed data types: int, float, double

dividend : variable or constant. Allowed data types: int

divisor : non zero variable or constant. Allowed data types: int

Example Code

int x = 0;

x = 7 % 5; // x now contains 2

x = 9 % 5; // x now contains 4

x = 5 % 5; // x now contains 0

x = 4 % 5; // x now contains 4

/* update one value in an array each time through a loop */

int values[10];

int i = 0;

void setup() {}

void loop()

{

 values[i] = analogRead(0);

 i = (i + 1) % 10; // modulo operator rolls over variable

}

Notes and Warnings

The modulo operator does not work on floats.

18

== [Comparison Operators]

Description

Compares the variable on the left with the value or variable on the right of the operator. Returns

true when the two operands are equal. Please note that you may compare variables of different data

types, but that could generate unpredictable results, it is therefore recommended to compare

variables of the same data type including the signed/unsigned type.

Syntax

x == y; // is true if x is equal to y and it is false if x is not equal to y

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

if (x==y) // tests if x is equal to y

{

// do something only if the comparison result is true

}

!= [Comparison Operators]

Description

Compares the variable on the left with the value or variable on the right of the operator. Returns

true when the two operands are not equal. Please note that you may compare variables of different

data types, but that could generate unpredictable results, it is therefore recommended to compare

variables of the same data type including the signed/unsigned type.

Syntax

x != y; // is false if x is equal to y and it is true if x is not equal to y

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

if (x!=y) // tests if x is not equal to y

{

// do something only if the comparison result is true

}

19

< [Comparison Operators]

Description

Compares the variable on the left with the value or variable on the right of the operator. Returns

true when the operand on the left is less (smaller) than the operand on the right. Please note that you

may compare variables of different data types, but that could generate unpredictable results, it is

therefore recommended to compare variables of the same data type including the signed/unsigned

type.

Syntax

x < y; // is true if x is smaller than y and it is false if x is equal or

bigger than y

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

if (x<y) // tests if x is less (smaller) than y

{

// do something only if the comparison result is true

}

Notes and Warnings

Negative numbers are less than positive numbers.

> [Comparison Operators]

Description

Compares the variable on the left with the value or variable on the right of the operator. Returns

true when the operand on the left is greater (bigger) than the operand on the right. Please note that

you may compare variables of different data types, but that could generate unpredictable results, it

is therefore recommended to compare variables of the same data type including the signed/unsigned

type.

Syntax

x > y; // is true if x is bigger than y and it is false if x is equal or

smaller than y

Parameters

20

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

if (x>y) // tests if x is greater (bigger) than y

{

// do something only if the comparison result is true

}

Notes and Warnings

Positive numbers are greater than negative numbers.

<= [Comparison Operators]

Description

Compares the variable on the left with the value or variable on the right of the operator. Returns

true when the operand on the left is less (smaller) than or equal to the operand on the right. Please

note that you may compare variables of different data types, but that could generate unpredictable

results, it is therefore recommended to compare variables of the same data type including the

signed/unsigned type.

Syntax

x <= y; // is true if x is smaller than or equal to y and it is false if x is

greater than y

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

if (x<=y) // tests if x is less (smaller) than or equal to y

{

// do something only if the comparison result is true

}

Notes and Warnings

Negative numbers are smaller than positive numbers.

>= [Comparison Operators]

Description

21

Compares the variable on the left with the value or variable on the right of the operator. Returns

true when the operand on the left is greater (bigger) than or equal to the operand on the right. Please

note that you may compare variables of different data types, but that could generate unpredictable

results, it is therefore recommended to compare variables of the same data type including the

signed/unsigned type.

Syntax

x >= y; // is true if x is bigger than or equal to y and it is false if x is

smaller than y

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

if (x>=y) // tests if x is greater (bigger) than or equal to y

{

// do something only if the comparison result is true

}

Notes and Warnings

Positive numbers are greater than negative numbers.

&& [Boolean Operators]

Description

Logical AND results in true only if both operands are true.

Example Code

This operator can be used inside the condition of an if statement.

if (digitalRead(2) == HIGH && digitalRead(3) == HIGH) { // if BOTH the switches

read HIGH

 // statements

}

Notes and Warnings

Make sure you don’t mistake the boolean AND operator, && (double ampersand) for the bitwise

AND operator & (single ampersand). They are entirely different beasts.

|| [Boolean Operators]

https://www.arduino.cc/reference/en/language/structure/control-structure/if

22

Description

Logical OR results in a true if either of the two operands is true.

Example Code

This operator can be used inside the condition of an if statement.

if (x > 0 || y > 0) { // if either x or y is greater than zero

 // statements

}

Notes and Warnings

Do not confuse the boolean || (double pipe) operator with the bitwise OR operator | (single pipe).

! [Boolean Operators]

Description

Logical NOT results in a true if the operand is false and vice versa.

Example Code

This operator can be used inside the condition of an if statement.

if (!x) { // if x is not true

 // statements

}

It can be used to invert the boolean value.

x = !y; // the inverted value of y is stored in x

Notes and Warnings

The bitwise not ~ (tilde) looks much different than the boolean not ! (exclamation point or "bang"

as the programmers say) but you still have to be sure which one you want where.

* [Pointer Access Operators]

Description

Dereferencing is one of the features specifically for use with pointers. The asterisk operator * is

used for this purpose. If p is a pointer, then *p represents the value contained in the address pointed

by p.

https://www.arduino.cc/reference/en/language/structure/control-structure/if/
https://www.arduino.cc/reference/en/language/structure/control-structure/if

23

Example Code

int *p; // declare a pointer to an int data type

int i = 5, result = 0;

p = &i; // now 'p' contains the address of 'i'

result = *p; // 'result' gets the value at the address pointed by 'p'

 // i.e., it gets the value of 'i' which is 5

Notes and Warnings

Pointers are one of the complicated subjects for beginners in learning C, and it is possible to write

the vast majority of Arduino sketches without ever encountering pointers. However for

manipulating certain data structures, the use of pointers can simplify the code, and and knowledge

of manipulating pointers is handy to have in one’s toolkit.

& [Pointer Access Operators]

Description

Referencing is one of the features specifically for use with pointers. The ampersand operator & is

used for this purpose. If x is a variable, then &x represents the address of the variable x.

Example Code

int *p; // declare a pointer to an int data type

int i = 5, result = 0;

p = &i; // now 'p' contains the address of 'i'

result = *p; // 'result' gets the value at the address pointed by 'p'

 // i.e., it gets the value of 'i' which is 5

Notes and Warnings

Pointers are one of the complicated subjects for beginners in learning C, and it is possible to write

the vast majority of Arduino sketches without ever encountering pointers. However for

manipulating certain data structures, the use of pointers can simplify the code, and knowledge of

manipulating pointers is handy to have in one’s toolkit.

& [Bitwise Operators]

Description

The bitwise AND operator in C++ is a single ampersand &, used between two other integer

expressions. Bitwise AND operates on each bit position of the surrounding expressions

independently, according to this rule: if both input bits are 1, the resulting output is 1, otherwise the

output is 0.

Another way of expressing this is:

24

0 0 1 1 operand1

0 1 0 1 operand2

0 0 0 1 (operand1 & operand2) - returned result

In Arduino, the type int is a 16-bit value, so using & between two int expressions causes 16

simultaneous AND operations to occur.

Example Code

In a code fragment like:

int a = 92; // in binary: 0000000001011100

int b = 101; // in binary: 0000000001100101

int c = a & b; // result: 0000000001000100, or 68 in decimal.

Each of the 16 bits in a and b are processed by using the bitwise AND, and all 16 resulting bits are

stored in c, resulting in the value 01000100 in binary, which is 68 in decimal.

One of the most common uses of bitwise AND is to select a particular bit (or bits) from an integer

value, often called masking. See below for an example

PORTD = PORTD & B00000011; // clear out bits 2 - 7, leave pins 0 and 1

untouched (xx & 11 == xx)

| [Bitwise Operators]

Description

The bitwise OR operator in C++ is the vertical bar symbol, |. Like the & operator, | operates

independently each bit in its two surrounding integer expressions, but what it does is different (of

course). The bitwise OR of two bits is 1 if either or both of the input bits is 1, otherwise it is 0.

In other words:

0 0 1 1 operand1

0 1 0 1 operand2

0 1 1 1 (operand1 | operand2) - returned result

Example Code

int a = 92; // in binary: 0000000001011100

int b = 101; // in binary: 0000000001100101

int c = a | b; // result: 0000000001111101, or 125 in decimal.

One of the most common uses of the Bitwise OR is to set multiple bits in a bit-packed number.

25

DDRD = DDRD | B11111100; // set direction bits for pins 2 to 7, leave 0 and 1

untouched (xx | 00 == xx)

// same as pinMode(pin, OUTPUT) for pins 2 to 7

^ [Bitwise Operators]

Description

There is a somewhat unusual operator in C++ called bitwise EXCLUSIVE OR, also known as

bitwise XOR. (In English this is usually pronounced "eks-or".) The bitwise XOR operator is written

using the caret symbol ^. A bitwise XOR operation results in a 1 only if the input bits are different,

else it results in a 0.

Precisely,

0 0 1 1 operand1

0 1 0 1 operand2

0 1 1 0 (operand1 ^ operand2) - returned result

Example Code

int x = 12; // binary: 1100

int y = 10; // binary: 1010

int z = x ^ y; // binary: 0110, or decimal 6

The ^ operator is often used to toggle (i.e. change from 0 to 1, or 1 to 0) some of the bits in an

integer expression. In a bitwise XOR operation if there is a 1 in the mask bit, that bit is inverted; if

there is a 0, the bit is not inverted and stays the same. Below is a program to blink digital pin 5.

// Blink_Pin_5

// demo for Exclusive OR

void setup(){

DDRD = DDRD | B00100000; // set digital pin five as OUTPUT

Serial.begin(9600);

}

void loop(){

PORTD = PORTD ^ B00100000; // invert bit 5 (digital pin 5), leave others

untouched

delay(100);

}

~ [Bitwise Operators]

Description

The bitwise NOT operator in C++ is the tilde character ~. Unlike & and |, the bitwise NOT operator

is applied to a single operand to its right. Bitwise NOT changes each bit to its opposite: 0 becomes

1, and 1 becomes 0.

26

In other words:

0 1 operand1

1 0 ~operand1

Example Code

int a = 103; // binary: 0000000001100111

int b = ~a; // binary: 1111111110011000 = -104

Notes and Warnings

You might be surprised to see a negative number like -104 as the result of this operation. This is

because the highest bit in an int variable is the so-called sign bit. If the highest bit is 1, the number

is interpreted as negative. This encoding of positive and negative numbers is referred to as two’s

complement. For more information, see the Wikipedia article on two’s complement.

As an aside, it is interesting to note that for any integer x, ~x is the same as -x-1.

At times, the sign bit in a signed integer expression can cause some unwanted surprises.

<< [Bitwise Operators]

Description

The left shift operator << causes the bits of the left operand to be shifted left by the number of

positions specified by the right operand.

Syntax

variable << number_of_bits;

Parameters

variable: Allowed data types: byte, int, long

number_of_bits: a number that is < = 32. Allowed data types: int

Example Code

int a = 5; // binary: 0000000000000101

int b = a << 3; // binary: 0000000000101000, or 40 in decimal

Notes and Warnings

When you shift a value x by y bits (x << y), the leftmost y bits in x are lost, literally shifted out of

existence:

int x = 5; // binary: 0000000000000101

http://en.wikipedia.org/wiki/Twos_complement

27

int y = 14;

int result = x << y; // binary: 0100000000000000 - the first 1 in 101 was

discarded

If you are certain that none of the ones in a value are being shifted into oblivion, a simple way to

think of the left-shift operator is that it multiplies the left operand by 2 raised to the right operand

power. For example, to generate powers of 2, the following expressions can be employed:

 Operation Result

 --------- ------

 1 << 0 1

 1 << 1 2

 1 << 2 4

 1 << 3 8

 ...

 1 << 8 256

 1 << 9 512

 1 << 10 1024

 ...

The following example can be used to print out the value of a received byte to the serial monitor,

using the left shift operator to move along the byte from bottom(LSB) to top (MSB), and print out

its Binary value:

// Prints out Binary value (1 or 0) of byte

void printOut1(int c) {

 for (int bits = 7; bits > -1; bits--) {

 // Compare bits 7-0 in byte

 if (c & (1 << bits)) {

 Serial.print ("1");

 }

 else {

 Serial.print ("0");

 }

 }

}

>> [Bitwise Operators]

Description

The right shift operator >> causes the bits of the left operand to be shifted right by the number of

positions specified by the right operand.

Syntax

variable >> number_of_bits;

Parameters

variable: Allowed data types: byte, int, long

number_of_bits: a number that is < = 32. Allowed data types: int

Example Code

28

int a = 40; // binary: 0000000000101000

int b = a >> 3; // binary: 0000000000000101, or 5 in decimal

Notes and Warnings

When you shift x right by y bits (x >> y), and the highest bit in x is a 1, the behavior depends on the

exact data type of x. If x is of type int, the highest bit is the sign bit, determining whether x is

negative or not, as we have discussed above. In that case, the sign bit is copied into lower bits, for

esoteric historical reasons:

int x = -16; // binary: 1111111111110000

int y = 3;

int result = x >> y; // binary: 1111111111111110

This behavior, called sign extension, is often not the behavior you want. Instead, you may wish

zeros to be shifted in from the left. It turns out that the right shift rules are different for unsigned int

expressions, so you can use a typecast to suppress ones being copied from the left:

int x = -16; // binary: 1111111111110000

int y = 3;

int result = (unsigned int)x >> y; // binary: 0001111111111110

If you are careful to avoid sign extension, you can use the right-shift operator >> as a way to divide

by powers of 2. For example:

int x = 1000;

int y = x >> 3; // integer division of 1000 by 8, causing y = 125.

++ [Compound Operators]

Description

Increments the value of a variable by 1.

Syntax

x++; // increment x by one and returns the old value of x

++x; // increment x by one and returns the new value of x

Parameters

x: variable. Allowed data types: integer, long (possibly unsigned)

Returns

The original or newly incremented value of the variable.

29

Example Code

x = 2;

y = ++x; // x now contains 3, y contains 3

y = x++; // x contains 4, but y still contains 3

-- [Compound Operators]

Description

Decrements the value of a variable by 1.

Syntax

x-- ; // decrement x by one and returns the old value of x

--x ; // decrement x by one and returns the new value of x

Parameters

x: variable. Allowed data types: integer, long (possibly unsigned)

Returns

The original or newly decremented value of the variable.

Example Code

x = 2;

y = --x; // x now contains 1, y contains 1

y = x--; // x contains 0, but y still contains 1

+= [Compound Operators]

Description

This is a convenient shorthand to perform addition on a variable with another constant or variable.

Syntax

x += y; // equivalent to the expression x = x + y;

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

30

Example Code

x = 2;

x += 4; // x now contains 6

-= [Compound Operators]

Description

This is a convenient shorthand to perform subtraction of a constant or a variable from a variable.

Syntax

x -= y; // equivalent to the expression x = x - y;

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

x = 20;

x -= 2; // x now contains 18

*= [Compound Operators]

Description

This is a convenient shorthand to perform multiplication of a variable with another constant or

variable.

Syntax

x *= y; // equivalent to the expression x = x * y;

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

x = 2;

x *= 2; // x now contains 4

31

/= [Compound Operators]

Description

This is a convenient shorthand to perform division of a variable with another constant or variable.

Syntax

x /= y; // equivalent to the expression x = x / y;

Parameters

x: variable. Allowed data types: int, float, double, byte, short, long

y: non zero variable or constant. Allowed data types: int, float, double, byte, short, long

Example Code

x = 2;

x /= 2; // x now contains 1

&= [Compound Operators]

Description

The compound bitwise AND operator &= is often used with a variable and a constant to force

particular bits in a variable to the LOW state (to 0). This is often referred to in programming guides

as "clearing" or "resetting" bits.

A review of the Bitwise AND & operator:

0 0 1 1 operand1

0 1 0 1 operand2

0 0 0 1 (operand1 & operand2) - returned result

Syntax

x &= y; // equivalent to x = x & y;

Parameters

x: variable. Allowed data types: char, int, long

y: variable or constant. Allowed data types: char, int, long

Example Code

32

Bits that are "bitwise ANDed" with 0 are cleared to 0 so, if myByte is a byte variable,

myByte & B00000000 = 0;

Bits that are "bitwise ANDed" with 1 are unchanged so,

myByte & B11111111 = myByte;

Notes and Warnings

Because we are dealing with bits in a bitwise operator - it is convenient to use the binary formatter

with constants. The numbers are still the same value in other representations, they are just not as

easy to understand. Also, B00000000 is shown for clarity, but zero in any number format is zero

(hmmm something philosophical there?)

Consequently - to clear (set to zero) bits 0 & 1 of a variable, while leaving the rest of the variable

unchanged, use the compound bitwise AND operator (&=) with the constant B11111100

1 0 1 0 1 0 1 0 variable

1 1 1 1 1 1 0 0 mask

1 0 1 0 1 0 0 0

bits unchanged

 bits cleared

Here is the same representation with the variable’s bits replaced with the symbol x

x x x x x x x x variable

1 1 1 1 1 1 0 0 mask

x x x x x x 0 0

bits unchanged

 bits cleared

So if:

myByte = B10101010;

myByte &= B11111100; // results in B10101000

|= [Compound Operators]

Description

The compound bitwise OR operator |= is often used with a variable and a constant to "set" (set to 1)

particular bits in a variable.

A review of the Bitwise OR | operator:

0 0 1 1 operand1

0 1 0 1 operand2

0 1 1 1 (operand1 | operand2) - returned result

33

Syntax

x |= y; // equivalent to x = x | y;

Parameters

x: variable. Allowed data types: char, int, long

y: variable or constant. Allowed data types: char, int, long

Example Code

Bits that are "bitwise ORed" with 0 are unchanged, so if myByte is a byte variable,

myByte | B00000000 = myByte;

Bits that are "bitwise ORed" with 1 are set to 1 so:

myByte | B11111111 = B11111111;

Notes and Warnings

Because we are dealing with bits in a bitwise operator - it is convenient to use the binary formatter

with constants. The numbers are still the same value in other representations, they are just not as

easy to understand. Also, B00000000 is shown for clarity, but zero in any number format is zero.

Consequently - to set bits 0 & 1 of a variable, while leaving the rest of the variable unchanged, use

the compound bitwise OR operator (|=) with the constant B00000011

1 0 1 0 1 0 1 0 variable

0 0 0 0 0 0 1 1 mask

1 0 1 0 1 0 1 1

bits unchanged

 bits set

Here is the same representation with the variables bits replaced with the symbol x

x x x x x x x x variable

0 0 0 0 0 0 1 1 mask

x x x x x x 1 1

bits unchanged

 bits set

So if:

myByte = B10101010;

myByte |= B00000011 == B10101011;

Variables

34

Arduino data types and constants.

constants

Description

Constants are predefined expressions in the Arduino language. They are used to make the programs

easier to read. We classify constants in groups:

Defining Logical Levels: true and false (Boolean Constants)

There are two constants used to represent truth and falsity in the Arduino language: true, and

false.

false

false is the easier of the two to define. false is defined as 0 (zero).

true

true is often said to be defined as 1, which is correct, but true has a wider definition. Any integer

which is non-zero is true, in a Boolean sense. So -1, 2 and -200 are all defined as true, too, in a

Boolean sense.

Note that the true and false constants are typed in lowercase unlike HIGH, LOW, INPUT, and

OUTPUT.

Defining Pin Levels: HIGH and LOW

When reading or writing to a digital pin there are only two possible values a pin can take/be-set-to:

HIGH and LOW.

HIGH

The meaning of HIGH (in reference to a pin) is somewhat different depending on whether a pin is set

to an INPUT or OUTPUT. When a pin is configured as an INPUT with pinMode(), and read with

digitalRead(), the Arduino (ATmega) will report HIGH if:

 a voltage greater than 3.0V is present at the pin (5V boards)

 a voltage greater than 2.0V volts is present at the pin (3.3V boards)

A pin may also be configured as an INPUT with pinMode(), and subsequently made HIGH with

digitalWrite(). This will enable the internal 20K pullup resistors, which will pull up the input pin to

a HIGH reading unless it is pulled LOW by external circuitry. This is how INPUT_PULLUP works and is

described below in more detail.

When a pin is configured to OUTPUT with pinMode(), and set to HIGH with digitalWrite(), the

pin is at:

 5 volts (5V boards)

 3.3 volts (3.3V boards)

https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite
https://www.arduino.cc/reference/en/language/functions/digital-io/pinmode
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread

35

In this state it can source current, e.g. light an LED that is connected through a series resistor to

ground.

LOW

The meaning of LOW also has a different meaning depending on whether a pin is set to INPUT or

OUTPUT. When a pin is configured as an INPUT with pinMode(), and read with digitalRead(), the

Arduino (ATmega) will report LOW if:

 a voltage less than 1.5V is present at the pin (5V boards)

 a voltage less than 1.0V (Approx) is present at the pin (3.3V boards)

When a pin is configured to OUTPUT with pinMode(), and set to LOW with digitalWrite(), the pin

is at 0 volts (both 5V and 3.3V boards). In this state it can sink current, e.g. light an LED that is

connected through a series resistor to +5 volts (or +3.3 volts).

Defining Digital Pins modes: INPUT, INPUT_PULLUP, and OUTPUT

Digital pins can be used as INPUT, INPUT_PULLUP, or OUTPUT. Changing a pin with pinMode()

changes the electrical behavior of the pin.

Pins Configured as INPUT

Arduino (ATmega) pins configured as INPUT with pinMode() are said to be in a high-impedance

state. Pins configured as INPUT make extremely small demands on the circuit that they are

sampling, equivalent to a series resistor of 100 Megohms in front of the pin. This makes them

useful for reading a sensor.

If you have your pin configured as an INPUT, and are reading a switch, when the switch is in the

open state the input pin will be "floating", resulting in unpredictable results. In order to assure a

proper reading when the switch is open, a pull-up or pull-down resistor must be used. The purpose

of this resistor is to pull the pin to a known state when the switch is open. A 10 K ohm resistor is

usually chosen, as it is a low enough value to reliably prevent a floating input, and at the same time

a high enough value to not not draw too much current when the switch is closed. See the Digital

Read Serial tutorial for more information.

If a pull-down resistor is used, the input pin will be LOW when the switch is open and HIGH when the

switch is closed.

If a pull-up resistor is used, the input pin will be HIGH when the switch is open and LOW when the

switch is closed.

Pins Configured as INPUT_PULLUP

The ATmega microcontroller on the Arduino has internal pull-up resistors (resistors that connect to

power internally) that you can access. If you prefer to use these instead of external pull-up resistors,

you can use the INPUT_PULLUP argument in pinMode().

See the Input Pullup Serial tutorial for an example of this in use.

Pins configured as inputs with either INPUT or INPUT_PULLUP can be damaged or destroyed if they

are connected to voltages below ground (negative voltages) or above the positive power rail (5V or

3V).

http://arduino.cc/en/Tutorial/InputPullupSerial
http://arduino.cc/en/Tutorial/DigitalReadSerial
http://arduino.cc/en/Tutorial/DigitalReadSerial

36

Pins Configured as OUTPUT

Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state. This means that

they can provide a substantial amount of current to other circuits. ATmega pins can source (provide

current) or sink (absorb current) up to 40 mA (milliamps) of current to other devices/circuits. This

makes them useful for powering LEDs because LEDs typically use less than 40 mA. Loads greater

than 40 mA (e.g. motors) will require a transistor or other interface circuitry.

Pins configured as outputs can be damaged or destroyed if they are connected to either the ground

or positive power rails.

Defining built-ins: LED_BUILTIN

Most Arduino boards have a pin connected to an on-board LED in series with a resistor. The

constant LED_BUILTIN is the number of the pin to which the on-board LED is connected. Most

boards have this LED connected to digital pin 13.

Integer Constants

Description

Integer constants are numbers that are used directly in a sketch, like 123. By default, these numbers

are treated as int but you can change this with the U and L modifiers (see below).

Normally, integer constants are treated as base 10 (decimal) integers, but special notation

(formatters) may be used to enter numbers in other bases.

Base Example Formatter Comment

10 (decimal) 123 none

2 (binary) B1111011 leading 'B'
only works with 8 bit values (0 to 255) characters 0&1

valid

8 (octal) 0173 leading "0" characters 0-7 valid

16

(hexadecimal)
0x7B

leading

"0x"
characters 0-9, A-F, a-f valid

Decimal (base 10)

This is the common-sense math with which you are acquainted. Constants without other prefixes

are assumed to be in decimal format.

Example Code:

n = 101; // same as 101 decimal ((1 * 10^2) + (0 * 10^1) + 1)

Binary (base 2)

Only the characters 0 and 1 are valid.

https://www.arduino.cc/reference/en/language/variables/data-types/int

37

Example Code:

n = B101; // same as 5 decimal ((1 * 2^2) + (0 * 2^1) + 1)

The binary formatter only works on bytes (8 bits) between 0 (B0) and 255 (B11111111). If it is

convenient to input an int (16 bits) in binary form you can do it a two-step procedure such as:

myInt = (B11001100 * 256) + B10101010; // B11001100 is the high byte`

Octal (base 8)

Only the characters 0 through 7 are valid. Octal values are indicated by the prefix "0" (zero).

Example Code:

n = 0101; // same as 65 decimal ((1 * 8^2) + (0 * 8^1) + 1)

It is possible to generate a hard-to-find bug by (unintentionally) including a leading zero before a

constant and having the compiler unintentionally interpret your constant as octal.

Hexadecimal (base 16)

Valid characters are 0 through 9 and letters A through F; A has the value 10, B is 11, up to F, which

is 15. Hex values are indicated by the prefix "0x". Note that A-F may be syted in upper or lower

case (a-f).

Example Code:

n = 0x101; // same as 257 decimal ((1 * 16^2) + (0 * 16^1) + 1)

Notes and Warnings

U & L formatters:

By default, an integer constant is treated as an int with the attendant limitations in values. To

specify an integer constant with another data type, follow it with:

 a 'u' or 'U' to force the constant into an unsigned data format. Example: 33u

 a 'l' or 'L' to force the constant into a long data format. Example: 100000L

 a 'ul' or 'UL' to force the constant into an unsigned long constant. Example: 32767ul

Floating Point Constants

Description

38

Similar to integer constants, floating point constants are used to make code more readable. Floating

point constants are swapped at compile time for the value to which the expression evaluates.

Example Code

n = 0.005; // 0.005 is a floating point constant

Notes and Warnings

Floating point constants can also be expressed in a variety of scientific notation. 'E' and 'e' are both

accepted as valid exponent indicators.

floating-point constant evaluates to: also evaluates to:

10.0 10

2.34E5 2.34 * 10^5 234000

67e-12 67.0 * 10^-12 0.000000000067

Data Types

void [Data Types]

Description

The void keyword is used only in function declarations. It indicates that the function is expected to

return no information to the function from which it was called.

Example Code

The code shows how to use void.

// actions are performed in the functions "setup" and "loop"

// but no information is reported to the larger program

void setup()

{

 // ...

}

void loop()

{

 // ...

}

boolean [Data Types]

Description

39

boolean is a non-standard type alias for bool defined by Arduino. It’s recommended to instead use

the standard type bool, which is identical.

bool [Data Types]

Description

A bool holds one of two values, true or false. (Each bool variable occupies one byte of

memory.)

Example Code

This code shows how to use the bool datatype.

int LEDpin = 5; // LED on pin 5

int switchPin = 13; // momentary switch on 13, other side connected to ground

bool running = false;

void setup()

{

 pinMode(LEDpin, OUTPUT);

 pinMode(switchPin, INPUT);

 digitalWrite(switchPin, HIGH); // turn on pullup resistor

}

void loop()

{

 if (digitalRead(switchPin) == LOW)

 { // switch is pressed - pullup keeps pin high normally

 delay(100); // delay to debounce switch

 running = !running; // toggle running variable

 digitalWrite(LEDpin, running); // indicate via LED

 }

}

char [Data Types]

Description

A data type that takes up 1 byte of memory that stores a character value. Character literals are

written in single quotes, like this: 'A' (for multiple characters - strings - use double quotes: "ABC").

Characters are stored as numbers however. You can see the specific encoding in the ASCII chart.

This means that it is possible to do arithmetic on characters, in which the ASCII value of the

character is used (e.g. 'A' + 1 has the value 66, since the ASCII value of the capital letter A is 65).

See Serial.println reference for more on how characters are translated to numbers.

The char datatype is a signed type, meaning that it encodes numbers from -128 to 127. For an

unsigned, one-byte (8 bit) data type, use the byte data type.

Example Code

https://www.arduino.cc/reference/en/language/functions/communication/serial/println
https://www.arduino.cc/en/Reference/ASCIIchart
https://www.arduino.cc/reference/en/language/variables/data-types/bool/

40

 char myChar = 'A';

 char myChar = 65; // both are equivalent

unsigned char [Data Types]

Description

An unsigned data type that occupies 1 byte of memory. Same as the byte datatype.

The unsigned char datatype encodes numbers from 0 to 255.

For consistency of Arduino programming style, the byte data type is to be preferred.

Example Code

unsigned char myChar = 240;

byte [Data Types]

Description

A byte stores an 8-bit unsigned number, from 0 to 255.

Example Code

int [Data Types]

Description

Integers are your primary data-type for number storage.

On the Arduino Uno (and other ATmega based boards) an int stores a 16-bit (2-byte) value. This

yields a range of -32,768 to 32,767 (minimum value of -2^15 and a maximum value of (2^15) - 1).

On the Arduino Due and SAMD based boards (like MKR1000 and Zero), an int stores a 32-bit (4-

byte) value. This yields a range of -2,147,483,648 to 2,147,483,647 (minimum value of -2^31 and a

maximum value of (2^31) - 1).

int’s store negative numbers with a technique called (2’s complement math). The highest bit,

sometimes referred to as the "sign" bit, flags the number as a negative number. The rest of the bits

are inverted and 1 is added.

The Arduino takes care of dealing with negative numbers for you, so that arithmetic operations

work transparently in the expected manner. There can be an unexpected complication in dealing

with the bitshift right operator (>>) however.

Syntax

http://en.wikipedia.org/wiki/2%27s_complement
https://www.arduino.cc/reference/en/language/structure/bitwise-operators/bitshiftright/
https://www.arduino.cc/reference/en/language/variables/data-types/byte

41

int var = val;

var - your int variable name

val - the value you assign to that variable

Example Code

 int ledPin = 13;

Notes and Warnings

When signed variables are made to exceed their maximum or minimum capacity they overflow. The

result of an overflow is unpredictable so this should be avoided. A typical symptom of an overflow

is the variable "rolling over" from its maximum capacity to its minimum or vice versa, but this is

not always the case. If you want this behavior, use unsigned int.

unsigned int [Data Types]

Description

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are the same as

ints in that they store a 2 byte value. Instead of storing negative numbers however they only store

positive values, yielding a useful range of 0 to 65,535 ((2^16) - 1).

The Due stores a 4 byte (32-bit) value, ranging from 0 to 4,294,967,295 (2^32 - 1).

The difference between unsigned ints and (signed) ints, lies in the way the highest bit, sometimes

referred to as the "sign" bit, is interpreted. In the Arduino int type (which is signed), if the high bit

is a "1", the number is interpreted as a negative number, and the other 15 bits are interpreted with

(2’s complement math).

Syntax

unsigned int var = val; var - your unsigned int variable name val - the value you assign to

that variable

Example Code

 unsigned int ledPin = 13;

Notes and Warnings

When unsigned variables are made to exceed their maximum capacity they "roll over" back to 0,

and also the other way around:

unsigned int x;

 x = 0;

 x = x - 1; // x now contains 65535 - rolls over in neg direction

 x = x + 1; // x now contains 0 - rolls over

https://www.arduino.cc/reference/en/language/variables/data-types/unsignedint/
http://en.wikipedia.org/wiki/2%27s_complement

42

Math with unsigned variables may produce unexpected results, even if your unsigned variable never

rolls over.

The MCU applies the following rules:

The calculation is done in the scope of the destination variable. E.g. if the destination variable is

signed, it will do signed math, even if both input variables are unsigned.

However with a calculation which requires an intermediate result, the scope of the intermediate

result is unspecified by the code. In this case, the MCU will do unsigned math for the intermediate

result, because both inputs are unsigned!

unsigned int x=5;

unsigned int y=10;

int result;

 result = x - y; // 5 - 10 = -5, as expected

 result = (x - y)/2; // 5 - 10 in unsigned math is 65530! 65530/2 = 32765

 // solution: use signed variables, or do the calculation step by step.

 result = x - y; // 5 - 10 = -5, as expected

 result = result / 2; // -5/2 = -2 (only integer math, decimal places are

dropped)

Why use unsigned variables at all?

 The rollover behaviour is desired, e.g. counters

 The signed variable is a bit too small, but you want to avoid the memory and speed loss of

long/float.

word [Data Types]

Description

A word stores a 16-bit unsigned number, from 0 to 65535. Same as an unsigned int.

Example Code

 word w = 10000;

long [Data Types]

Description

Long variables are extended size variables for number storage, and store 32 bits (4 bytes), from -

2,147,483,648 to 2,147,483,647.

If doing math with integers, at least one of the numbers must be followed by an L, forcing it to be a

long. See the Integer Constants page for details.

https://www.arduino.cc/reference/en/language/variables/constants/integerconstants

43

Syntax

long var = val;

var - the long variable name val - the value assigned to the variable

Example Code

 long speedOfLight = 186000L; // see the Integer Constants page for

explanation of the 'L'

unsigned long [Data Types]

Description

Unsigned long variables are extended size variables for number storage, and store 32 bits (4 bytes).

Unlike standard longs unsigned longs won’t store negative numbers, making their range from 0 to

4,294,967,295 (2^32 - 1).

Syntax

unsigned long var = val;

var - your long variable name val - the value you assign to that variable

Example Code

unsigned long time;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Time: ");

 time = millis();

 //prints time since program started

 Serial.println(time);

 // wait a second so as not to send massive amounts of data

 delay(1000);

}

short [Data Types]

Description

44

A short is a 16-bit data-type.

On all Arduinos (ATMega and ARM based) a short stores a 16-bit (2-byte) value. This yields a

range of -32,768 to 32,767 (minimum value of -2^15 and a maximum value of (2^15) - 1).

Syntax

short var = val;

var - your short variable name val - the value you assign to that variable

Example Code

 short ledPin = 13

float [Data Types]

Description

Datatype for floating-point numbers, a number that has a decimal point. Floating-point numbers are

often used to approximate analog and continuous values because they have greater resolution than

integers. Floating-point numbers can be as large as 3.4028235E+38 and as low as -3.4028235E+38.

They are stored as 32 bits (4 bytes) of information.

Floats have only 6-7 decimal digits of precision. That means the total number of digits, not the

number to the right of the decimal point. Unlike other platforms, where you can get more precision

by using a double (e.g. up to 15 digits), on the Arduino, double is the same size as float.

Floating point numbers are not exact, and may yield strange results when compared. For example

6.0 / 3.0 may not equal 2.0. You should instead check that the absolute value of the difference

between the numbers is less than some small number.

Floating point math is also much slower than integer math in performing calculations, so should be

avoided if, for example, a loop has to run at top speed for a critical timing function. Programmers

often go to some lengths to convert floating point calculations to integer math to increase speed.

If doing math with floats, you need to add a decimal point, otherwise it will be treated as an int. See

the Floating point constants page for details.

Syntax

float var=val;

var - your float variable name val - the value you assign to that variable

Example Code

 float myfloat;

 float sensorCalbrate = 1.117;

https://www.arduino.cc/reference/en/language/variables/constants/floatingpointconstants

45

 int x;

 int y;

 float z;

 x = 1;

 y = x / 2; // y now contains 0, ints can't hold fractions

 z = (float)x / 2.0; // z now contains .5 (you have to use 2.0, not 2)

double [Data Types]

Description

Double precision floating point number. On the Uno and other ATMEGA based boards, this

occupies 4 bytes. That is, the double implementation is exactly the same as the float, with no gain in

precision.

On the Arduino Due, doubles have 8-byte (64 bit) precision.

Notes and Warnings

Users who borrow code from other sources that includes double variables may wish to examine the

code to see if the implied precision is different from that actually achieved on ATMEGA based

Arduinos.

String [Data Types]

Description

Text Strings can be represented in two ways. you can use the String data type, which is part of the

core as of version 0019, or you can make a String out of an array of type char and null-terminate it.

This page described the latter method. For more details on the String object, which gives you more

functionality at the cost of more memory, see the String object page.

Syntax

All of the following are valid declarations for Strings.

char Str1[15];
char Str2[8] = {'a', 'r', 'd', 'u', 'i', 'n', 'o'};
char Str3[8] = {'a', 'r', 'd', 'u', 'i', 'n', 'o', '\0'};
char Str4[] = "arduino";
char Str5[8] = "arduino";
char Str6[15] = "arduino";

Possibilities for declaring Strings

 Declare an array of chars without initializing it as in Str1

 Declare an array of chars (with one extra char) and the compiler will add the required null

character, as in Str2

 Explicitly add the null character, Str3

https://www.arduino.cc/reference/en/language/variables/data-types/stringobject

46

 Initialize with a String constant in quotation marks; the compiler will size the array to fit the

String constant and a terminating null character, Str4

 Initialize the array with an explicit size and String constant, Str5

 Initialize the array, leaving extra space for a larger String, Str6

Null termination

Generally, Strings are terminated with a null character (ASCII code 0). This allows functions (like

Serial.print()) to tell where the end of a String is. Otherwise, they would continue reading

subsequent bytes of memory that aren’t actually part of the String.

This means that your String needs to have space for one more character than the text you want it to

contain. That is why Str2 and Str5 need to be eight characters, even though "arduino" is only seven

- the last position is automatically filled with a null character. Str4 will be automatically sized to

eight characters, one for the extra null. In Str3, we’ve explicitly included the null character (written

'\0') ourselves.

Note that it’s possible to have a String without a final null character (e.g. if you had specified the

length of Str2 as seven instead of eight). This will break most functions that use Strings, so you

shouldn’t do it intentionally. If you notice something behaving strangely (operating on characters

not in the String), however, this could be the problem.

Single quotes or double quotes?

Strings are always defined inside double quotes ("Abc") and characters are always defined inside

single quotes('A').

Wrapping long Strings

You can wrap long Strings like this:

char myString[] = "This is the first line"

" this is the second line"

" etcetera";

Arrays of Strings

It is often convenient, when working with large amounts of text, such as a project with an LCD

display, to setup an array of Strings. Because Strings themselves are arrays, this is in actually an

example of a two-dimensional array.

In the code below, the asterisk after the datatype char “char*” indicates that this is an array of

“pointers”. All array names are actually pointers, so this is required to make an array of arrays.

Pointers are one of the more esoteric parts of C for beginners to understand, but it isn’t necessary to

understand pointers in detail to use them effectively here.

Example Code

char* myStrings[]={"This is String 1", "This is String 2", "This is String 3",

"This is String 4", "This is String 5","This is String 6"};

void setup(){

Serial.begin(9600);

}

void loop(){

47

for (int i = 0; i < 6; i++){

 Serial.println(myStrings[i]);

 delay(500);

 }

}

String() [Data Types]

Description

Constructs an instance of the String class. There are multiple versions that construct Strings from

different data types (i.e. format them as sequences of characters), including:

 a constant string of characters, in double quotes (i.e. a char array)

 a single constant character, in single quotes

 another instance of the String object

 a constant integer or long integer

 a constant integer or long integer, using a specified base

 an integer or long integer variable

 an integer or long integer variable, using a specified base

 a float or double, using a specified decimal palces

Constructing a String from a number results in a string that contains the ASCII representation of

that number. The default is base ten, so

String thisString = String(13);

gives you the String "13". You can use other bases, however. For example,

String thisString = String(13, HEX);

gives you the String "D", which is the hexadecimal representation of the decimal value 13. Or if

you prefer binary,

String thisString = String(13, BIN);

gives you the String "1101", which is the binary representation of 13.

Syntax

String(val)

String(val, base)

String(val, decimalPlaces)

Parameters

val: a variable to format as a String - Allowed data types: string, char, byte, int, long, unsigned int,

unsigned long, float, double

base (optional): the base in which to format an integral value decimalPlaces (only if val is float

or double): the desired decimal places

48

Returns

an instance of the String class.

Example Code

All of the following are valid declarations for Strings.

String stringOne = "Hello String"; // using

a constant String

String stringOne = String('a'); //

converting a constant char into a String

String stringTwo = String("This is a string"); // converting a

constant string into a String object

String stringOne = String(stringTwo + " with more"); // concatenating two

strings

String stringOne = String(13); //

using a constant integer

String stringOne = String(analogRead(0), DEC); // using an int and a

base

String stringOne = String(45, HEX); // using an

int and a base (hexadecimal)

String stringOne = String(255, BIN); // using an

int and a base (binary)

String stringOne = String(millis(), DEC); // using a

long and a base

String stringOne = String(5.698, 3); // using a

float and the decimal places

array [Data Types]

Description

An array is a collection of variables that are accessed with an index number. Arrays in the C

programming language, on which Arduino is based, can be complicated, but using simple arrays is

relatively straightforward.

Creating (Declaring) an Array

All of the methods below are valid ways to create (declare) an array.

 int myInts[6];

 int myPins[] = {2, 4, 8, 3, 6};

 int mySensVals[6] = {2, 4, -8, 3, 2};

 char message[6] = "hello";

You can declare an array without initializing it as in myInts.

In myPins we declare an array without explicitly choosing a size. The compiler counts the elements

and creates an array of the appropriate size.

Finally you can both initialize and size your array, as in mySensVals. Note that when declaring an

array of type char, one more element than your initialization is required, to hold the required null

character.

Accessing an Array

49

Arrays are zero indexed, that is, referring to the array initialization above, the first element of the

array is at index 0, hence

mySensVals[0] == 2, mySensVals[1] == 4, and so forth.

It also means that in an array with ten elements, index nine is the last element. Hence:

int myArray[10]={9,3,2,4,3,2,7,8,9,11};

 // myArray[9] contains 11

 // myArray[10] is invalid and contains random information (other memory

address)

For this reason you should be careful in accessing arrays. Accessing past the end of an array (using

an index number greater than your declared array size - 1) is reading from memory that is in use for

other purposes. Reading from these locations is probably not going to do much except yield invalid

data. Writing to random memory locations is definitely a bad idea and can often lead to unhappy

results such as crashes or program malfunction. This can also be a difficult bug to track down.

Unlike BASIC or JAVA, the C compiler does no checking to see if array access is within legal

bounds of the array size that you have declared.

To assign a value to an array:

mySensVals[0] = 10;

To retrieve a value from an array:

x = mySensVals[4];

Arrays and FOR Loops

Arrays are often manipulated inside for loops, where the loop counter is used as the index for each

array element. For example, to print the elements of an array over the serial port, you could do

something like this:

int i;

for (i = 0; i < 5; i = i + 1) {

 Serial.println(myPins[i]);

}

Example Code

For a complete program that demonstrates the use of arrays, see the (Knight Rider example) from

the (Tutorials).

http://www.arduino.cc/en/Tutorial/KnightRider
http://www.arduino.cc/en/Main/LearnArduino

50

Conversion

char() [Conversion]

Description

Converts a value to the char data type.

Syntax

char(x)

Parameters

x: a value of any type

Returns

char

byte() [Conversion]

Description

Converts a value to the byte data type.

Syntax

byte(x)

Parameters

x: a value of any type

Returns

byte

int() [Conversion]

Description

Converts a value to the int data type.

Syntax

int(x)

https://www.arduino.cc/reference/en/language/variables/data-types/byte
https://www.arduino.cc/reference/en/language/variables/data-types/int
https://www.arduino.cc/reference/en/language/variables/data-types/char

51

Parameters

x: a value of any type

Returns

İnt

word() [Conversion]

Description

Converts a value to the word data type.

Syntax

word(x)
word(h, l)

Parameters

x: a value of any type

h: the high-order (leftmost) byte of the word

l: the low-order (rightmost) byte of the word

Returns

Word

long() [Conversion]

Description

Converts a value to the long data type.

Syntax

long(x)

Parameters

x: a value of any type

Returns

long

https://www.arduino.cc/reference/en/language/variables/data-types/long
https://www.arduino.cc/reference/en/language/variables/data-types/word

52

float() [Conversion]

Description

Converts a value to the float data type.

Syntax

float(x)

Parameters

x: a value of any type

Returns

float

Notes and Warnings

See the reference for float for details about the precision and limitations of floating point numbers

on Arduino.

Variable Scope & Qualifiers

scope [Variable Scope & Qualifiers]

Description

Variables in the C programming language, which Arduino uses, have a property called scope. This

is in contrast to early versions of languages such as BASIC where every variable is a global

variable.

A global variable is one that can be seen by every function in a program. Local variables are only

visible to the function in which they are declared. In the Arduino environment, any variable

declared outside of a function (e.g. setup(), loop(), etc.), is a global variable.

When programs start to get larger and more complex, local variables are a useful way to insure that

only one function has access to its own variables. This prevents programming errors when one

function inadvertently modifies variables used by another function.

It is also sometimes handy to declare and initialize a variable inside a for loop. This creates a

variable that can only be accessed from inside the for-loop brackets.

Example Code

int gPWMval; // any function will see this variable

void setup()

{

https://www.arduino.cc/reference/en/language/variables/data-types/float
https://www.arduino.cc/reference/en/language/variables/data-types/float

53

 // ...

}

void loop()

{

 int i; // "i" is only "visible" inside of "loop"

 float f; // "f" is only "visible" inside of "loop"

 // ...

 for (int j = 0; j <100; j++){

 // variable j can only be accessed inside the for-loop brackets

 }

}

static [Variable Scope & Qualifiers]

Description

The static keyword is used to create variables that are visible to only one function. However

unlike local variables that get created and destroyed every time a function is called, static variables

persist beyond the function call, preserving their data between function calls.

Variables declared as static will only be created and initialized the first time a function is called.

Example Code

/* RandomWalk

* Paul Badger 2007

* RandomWalk wanders up and down randomly between two

* endpoints. The maximum move in one loop is governed by

* the parameter "stepsize".

* A static variable is moved up and down a random amount.

* This technique is also known as "pink noise" and "drunken walk".

*/

#define randomWalkLowRange -20

#define randomWalkHighRange 20

int stepsize;

int thisTime;

int total;

void setup()

{

 Serial.begin(9600);

}

void loop()

{ // test randomWalk function

 stepsize = 5;

 thisTime = randomWalk(stepsize);

 Serial.println(thisTime);

 delay(10);

}

int randomWalk(int moveSize){

 static int place; // variable to store value in random walk - declared

static so that it stores

54

 // values in between function calls, but no other

functions can change its value

 place = place + (random(-moveSize, moveSize + 1));

 if (place < randomWalkLowRange){ // check lower

and upper limits

 place = randomWalkLowRange + (randomWalkLowRange - place); // reflect

number back in positive direction

 }

 else if(place > randomWalkHighRange){

 place = randomWalkHighRange - (place - randomWalkHighRange); // reflect

number back in negative direction

 }

 return place;

}

volatile [Variable Scope & Qualifiers]

Description

volatile is a keyword known as a variable qualifier, it is usually used before the datatype of a

variable, to modify the way in which the compiler and subsequent program treats the variable.

Declaring a variable volatile is a directive to the compiler. The compiler is software which

translates your C/C++ code into the machine code, which are the real instructions for the Atmega

chip in the Arduino.

Specifically, it directs the compiler to load the variable from RAM and not from a storage register,

which is a temporary memory location where program variables are stored and manipulated. Under

certain conditions, the value for a variable stored in registers can be inaccurate.

A variable should be declared volatile whenever its value can be changed by something beyond the

control of the code section in which it appears, such as a concurrently executing thread. In the

Arduino, the only place that this is likely to occur is in sections of code associated with interrupts,

called an interrupt service routine.

int or long volatiles

If the volatile variable is bigger than a byte (e.g. a 16 bit int or a 32 bit long), then the

microcontroller can not read it in one step, because it is an 8 bit microcontroller. This means that

while your main code section (e.g. your loop) reads the first 8 bits of the variable, the interrupt

might already change the second 8 bits. This will produce random values for the variable.

Remedy:

While the variable is read, interrupts need to be disabled, so they can’t mess with the bits, while

they are read. There are several ways to do this:

1. LANGUAGE noInterrupts

2. use the ATOMIC_BLOCK macro. Atomic operations are single MCU operations - the

smallest possible unit.

Example Code

https://www.arduino.cc/reference/en/language/functions/interrupts/nointerrupts

55

// toggles LED when interrupt pin changes state

int pin = 13;

volatile byte state = LOW;

void setup()

{

 pinMode(pin, OUTPUT);

 attachInterrupt(0, blink, CHANGE);

}

void loop()

{

 digitalWrite(pin, state);

}

void blink()

{

 state = !state;

}

#include <util/atomic.h> // this library includes the ATOMIC_BLOCK macro.

volatile int input_from_interrupt;

 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {

 // code with interrupts blocked (consecutive atomic operations will not get

interrupted)

 int result = input_from_interrupt;

 }

const [Variable Scope & Qualifiers]

Description

The const keyword stands for constant. It is a variable qualifier that modifies the behavior of the

variable, making a variable "read-only". This means that the variable can be used just as any other

variable of its type, but its value cannot be changed. You will get a compiler error if you try to

assign a value to a const variable.

Constants defined with the const keyword obey the rules of variable scoping that govern other

variables. This, and the pitfalls of using #define, makes the const keyword a superior method for

defining constants and is preferred over using #define.

Example Code

const float pi = 3.14;

float x;

//

x = pi * 2; // it's fine to use consts in math

pi = 7; // illegal - you can't write to (modify) a constant

Notes and Warnings

#define or const

https://www.arduino.cc/reference/en/language/structure/further-syntax/define
https://www.arduino.cc/reference/en/language/variables/variable-scope--qualifiers/scope

56

You can use either const or #define for creating numeric or string constants. For arrays, you will

need to use const. In general const is preferred over #define for defining constants.

Utilities

sizeof() [Utilities]

Description

The sizeof operator returns the number of bytes in a variable type, or the number of bytes occupied

by an array.

Syntax

sizeof(variable)

Parameters

variable: any variable type or array (e.g. int, float, byte)

Returns

The number of bytes in a variable or bytes occupied in an array. (size_t)

Example Code

The sizeof operator is useful for dealing with arrays (such as strings) where it is convenient to be

able to change the size of the array without breaking other parts of the program.

This program prints out a text string one character at a time. Try changing the text phrase.

char myStr[] = "this is a test";

int i;

void setup(){

 Serial.begin(9600);

}

void loop() {

 for (i = 0; i < sizeof(myStr) - 1; i++){

 Serial.print(i, DEC);

 Serial.print(" = ");

 Serial.write(myStr[i]);

 Serial.println();

 }

 delay(5000); // slow down the program

}

Notes and Warnings

https://www.arduino.cc/reference/en/language/variables/data-types/array

57

Note that sizeof returns the total number of bytes. So for larger variable types such as ints, the for

loop would look something like this. Note also that a properly formatted string ends with the NULL

symbol, which has ASCII value 0.

for (i = 0; i < (sizeof(myInts)/sizeof(int)); i++) {

 // do something with myInts[i]

}

PROGMEM [Utilities]

Description

Store data in flash (program) memory instead of SRAM. There’s a description of the various types

of memory available on an Arduino board.

The PROGMEM keyword is a variable modifier, it should be used only with the datatypes defined in

pgmspace.h. It tells the compiler "put this information into flash memory", instead of into SRAM,

where it would normally go.

PROGMEM is part of the pgmspace.h library. It is included automatically in modern versions of the

IDE, however if you are using an IDE version below 1.0 (2011), you’ll first need to include the

library at the top your sketch, like this:

#include <avr/pgmspace.h>

Syntax

const dataType variableName[] PROGMEM = {data0, data1, data3…};

dataType - any variable type variableName - the name for your array of data

Note that because PROGMEM is a variable modifier, there is no hard and fast rule about where it

should go, so the Arduino compiler accepts all of the definitions below, which are also

synonymous. However experiments have indicated that, in various versions of Arduino (having to

do with GCC version), PROGMEM may work in one location and not in another. The "string table"

example below has been tested to work with Arduino 13. Earlier versions of the IDE may work

better if PROGMEM is included after the variable name.

const dataType variableName[] PROGMEM = {}; // use this form

const PROGMEM dataType variableName[] = {}; // or this one+ `const dataType

PROGMEM variableName[] = {}; // not this one

While PROGMEM could be used on a single variable, it is really only worth the fuss if you have a

larger block of data that needs to be stored, which is usually easiest in an array, (or another C data

structure beyond our present discussion).

Using PROGMEM is also a two-step procedure. After getting the data into Flash memory, it requires

special methods (functions), also defined in the http://www.nongnu.org/avr-libc/user-

manual/groupavrpgmspace.html[pgmspace.h] library, to read the data from program memory back

into SRAM, so we can do something useful with it.

Example Code

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html
http://www.arduino.cc/playground/Learning/Memory
http://www.nongnu.org/avr-libc/user-manual/group
http://www.arduino.cc/playground/Learning/Memory
http://www.nongnu.org/avr-libc/user-manual/group

58

The following code fragments illustrate how to read and write unsigned chars (bytes) and ints (2

bytes) to PROGMEM.

// save some unsigned ints

const PROGMEM uint16_t charSet[] = { 65000, 32796, 16843, 10, 11234};

// save some chars

const char signMessage[] PROGMEM = {"I AM PREDATOR, UNSEEN COMBATANT. CREATED

BY THE UNITED STATES DEPART"};

unsigned int displayInt;

int k; // counter variable

char myChar;

void setup() {

 Serial.begin(9600);

 while (!Serial); // wait for serial port to connect. Needed for native USB

 // put your setup code here, to run once:

 // read back a 2-byte int

 for (k = 0; k < 5; k++)

 {

 displayInt = pgm_read_word_near(charSet + k);

 Serial.println(displayInt);

 }

 Serial.println();

 // read back a char

 for (k = 0; k < strlen_P(signMessage); k++)

 {

 myChar = pgm_read_byte_near(signMessage + k);

 Serial.print(myChar);

 }

 Serial.println();

}

void loop() {

 // put your main code here, to run repeatedly:

}

Arrays of strings

It is often convenient when working with large amounts of text, such as a project with an LCD

display, to setup an array of strings. Because strings themselves are arrays, this is in actually an

example of a two-dimensional array.

These tend to be large structures so putting them into program memory is often desirable. The code

below illustrates the idea.

/*

 PROGMEM string demo

 How to store a table of strings in program memory (flash),

 and retrieve them.

 Information summarized from:

 http://www.nongnu.org/avr-libc/user-manual/pgmspace.html

 Setting up a table (array) of strings in program memory is slightly

complicated, but

 here is a good template to follow.

59

 Setting up the strings is a two-step process. First define the strings.

*/

#include <avr/pgmspace.h>

const char string_0[] PROGMEM = "String 0"; // "String 0" etc are strings to

store - change to suit.

const char string_1[] PROGMEM = "String 1";

const char string_2[] PROGMEM = "String 2";

const char string_3[] PROGMEM = "String 3";

const char string_4[] PROGMEM = "String 4";

const char string_5[] PROGMEM = "String 5";

// Then set up a table to refer to your strings.

const char* const string_table[] PROGMEM = {string_0, string_1, string_2,

string_3, string_4, string_5};

char buffer[30]; // make sure this is large enough for the largest string it

must hold

void setup()

{

 Serial.begin(9600);

 while(!Serial); // wait for serial port to connect. Needed for native USB

 Serial.println("OK");

}

void loop()

{

 /* Using the string table in program memory requires the use of special

functions to retrieve the data.

 The strcpy_P function copies a string from program space to a string in RAM

("buffer").

 Make sure your receiving string in RAM is large enough to hold whatever

 you are retrieving from program space. */

 for (int i = 0; i < 6; i++)

 {

 strcpy_P(buffer, (char*)pgm_read_word(&(string_table[i]))); // Necessary

casts and dereferencing, just copy.

 Serial.println(buffer);

 delay(500);

 }

}

Notes and Warnings

Please note that variables must be either globally defined, OR defined with the static keyword, in

order to work with PROGMEM.

The following code will NOT work when inside a function:

const char long_str[] PROGMEM = "Hi, I would like to tell you a bit about

myself.\n";

The following code WILL work, even if locally defined within a function:

const static char long_str[] PROGMEM = "Hi, I would like to tell you a bit about

myself.\n"

60

=== The F() macro

When an instruction like :

Serial.print("Write something on the Serial Monitor");

is used, the string to be printed is normally saved in RAM. If your sketch prints a lot of stuff on the

Serial Monitor, you can easily fill the RAM. If you have free FLASH memory space, you can easily

indicate that the string must be saved in FLASH using the syntax:

Serial.print(F("Write something on the Serial Monitor that is stored in

FLASH"));

Functions

Digital I/O

pinMode() [Digital I/O]

Description

Configures the specified pin to behave either as an input or an output. See the description of (digital

pins) for details on the functionality of the pins.

As of Arduino 1.0.1, it is possible to enable the internal pullup resistors with the mode

INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the internal pullups.

Syntax

pinMode(pin, mode)

Parameters

pin: the number of the pin whose mode you wish to set

mode: INPUT, OUTPUT, or INPUT_PULLUP. (see the (digital pins) page for a more complete

description of the functionality.)

Returns

Nothing

Example Code

The code makes the digital pin 13 OUTPUT and Toggles it HIGH and LOW

void setup()

{

http://arduino.cc/en/Tutorial/DigitalPins
http://arduino.cc/en/Reference/FunctionDeclaration
http://arduino.cc/en/Tutorial/DigitalPins
http://arduino.cc/en/Tutorial/DigitalPins

61

 pinMode(13, OUTPUT); // sets the digital pin 13 as output

}

void loop()

{

 digitalWrite(13, HIGH); // sets the digital pin 13 on

 delay(1000); // waits for a second

 digitalWrite(13, LOW); // sets the digital pin 13 off

 delay(1000); // waits for a second

}

Notes and Warnings

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

digitalWrite() [Digital I/O]

Description

Write a HIGH or a LOW value to a digital pin.

If the pin has been configured as an OUTPUT with pinMode(), its voltage will be set to the

corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for LOW.

If the pin is configured as an INPUT, digitalWrite() will enable (HIGH) or disable (LOW) the

internal pullup on the input pin. It is recommended to set the pinMode() to INPUT_PULLUP to enable

the internal pull-up resistor. See the digital pins tutorial for more information.

If you do not set the pinMode() to OUTPUT, and connect an LED to a pin, when calling

digitalWrite(HIGH), the LED may appear dim. Without explicitly setting pinMode(),

digitalWrite() will have enabled the internal pull-up resistor, which acts like a large current-

limiting resistor.

Syntax

digitalWrite(pin, value)

Parameters

pin: the pin number

value: HIGH or LOW

Returns

Nothing

Example Code

The code makes the digital pin 13 an OUTPUT and toggles it by alternating between HIGH and LOW at

one second pace.

void setup()

{

62

 pinMode(13, OUTPUT); // sets the digital pin 13 as output

}

void loop()

{

 digitalWrite(13, HIGH); // sets the digital pin 13 on

 delay(1000); // waits for a second

 digitalWrite(13, LOW); // sets the digital pin 13 off

 delay(1000); // waits for a second

}

Notes and Warnings

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

digitalRead() [Digital I/O]

Description

Reads the value from a specified digital pin, either HIGH or LOW.

Syntax

digitalRead(pin)

Parameters

pin: the number of the digital pin you want to read

Returns

HIGH or LOW

Example Code

Sets pin 13 to the same value as pin 7, declared as an input.

int ledPin = 13; // LED connected to digital pin 13

int inPin = 7; // pushbutton connected to digital pin 7

int val = 0; // variable to store the read value

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin 13 as output

 pinMode(inPin, INPUT); // sets the digital pin 7 as input

}

void loop()

{

 val = digitalRead(inPin); // read the input pin

 digitalWrite(ledPin, val); // sets the LED to the button's value

}

Notes and Warnings

63

If the pin isn’t connected to anything, digitalRead() can return either HIGH or LOW (and this can

change randomly).

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

Analog I/O

analogReference() [Analog I/O]

Description

Configures the reference voltage used for analog input (i.e. the value used as the top of the input

range). The options are:

Arduino AVR Boards (Uno, Mega, etc.)

 DEFAULT: the default analog reference of 5 volts (on 5V Arduino boards) or 3.3 volts (on

3.3V Arduino boards)

 INTERNAL: an built-in reference, equal to 1.1 volts on the ATmega168 or ATmega328P

and 2.56 volts on the ATmega8 (not available on the Arduino Mega)

 INTERNAL1V1: a built-in 1.1V reference (Arduino Mega only)

 INTERNAL2V56: a built-in 2.56V reference (Arduino Mega only)

 EXTERNAL: the voltage applied to the AREF pin (0 to 5V only) is used as the reference.

Arduino SAMD Boards (Zero, etc.)

 AR_DEFAULT: the default analog reference of 3.3V

 AR_INTERNAL: a built-in 2.23V reference

 AR_INTERNAL1V0: a built-in 1.0V reference

 AR_INTERNAL1V65: a built-in 1.65V reference

 AR_INTERNAL2V23: a built-in 2.23V reference

 AR_EXTERNAL: the voltage applied to the AREF pin is used as the reference

Arduino SAM Boards (Due)

 AR_DEFAULT: the default analog reference of 3.3V. This is the only supported option for

the Due.

Syntax

analogReference(type)

Parameters

type: which type of reference to use (see list of options in the description).

Returns

Nothing

64

Notes and Warnings

After changing the analog reference, the first few readings from analogRead() may not be

accurate.

Don’t use anything less than 0V or more than 5V for external reference voltage on the AREF

pin! If you’re using an external reference on the AREF pin, you must set the analog reference

to EXTERNAL before calling analogRead(). Otherwise, you will short together the active

reference voltage (internally generated) and the AREF pin, possibly damaging the microcontroller

on your Arduino board.

Alternatively, you can connect the external reference voltage to the AREF pin through a 5K

resistor, allowing you to switch between external and internal reference voltages. Note that the

resistor will alter the voltage that gets used as the reference because there is an internal 32K resistor

on the AREF pin. The two act as a voltage divider, so, for example, 2.5V applied through the

resistor will yield 2.5 * 32 / (32 + 5) = ~2.2V at the AREF pin.

analogRead() [Analog I/O]

Description

Reads the value from the specified analog pin. The Arduino board contains a 6 channel (8 channels

on the Mini and Nano, 16 on the Mega), 10-bit analog to digital converter. This means that it will

map input voltages between 0 and 5 volts into integer values between 0 and 1023. This yields a

resolution between readings of: 5 volts / 1024 units or, .0049 volts (4.9 mV) per unit. The input

range and resolution can be changed using analogReference().

It takes about 100 microseconds (0.0001 s) to read an analog input, so the maximum reading rate is

about 10,000 times a second.

Syntax

analogRead(pin)

Parameters

pin: the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on the Mini and

Nano, 0 to 15 on the Mega)

Returns

int(0 to 1023)

Example Code

The code reads the voltage on analogPin and displays it.

int analogPin = 3; // potentiometer wiper (middle terminal) connected to

analog pin 3

 // outside leads to ground and +5V

int val = 0; // variable to store the value read

void setup()

{

https://www.arduino.cc/reference/en/language/functions/analog-io/analogreference

65

 Serial.begin(9600); // setup serial

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 Serial.println(val); // debug value

}

Notes and Warnings

If the analog input pin is not connected to anything, the value returned by analogRead() will

fluctuate based on a number of factors (e.g. the values of the other analog inputs, how close your

hand is to the board, etc.).

analogWrite() [Analog I/O]

Description

Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying brightnesses or

drive a motor at various speeds. After a call to analogWrite(), the pin will generate a steady

square wave of the specified duty cycle until the next call to analogWrite() (or a call to

digitalRead() or digitalWrite()) on the same pin. The frequency of the PWM signal on most

pins is approximately 490 Hz. On the Uno and similar boards, pins 5 and 6 have a frequency of

approximately 980 Hz.

On most Arduino boards (those with the ATmega168 or ATmega328P), this function works on pins

3, 5, 6, 9, 10, and 11. On the Arduino Mega, it works on pins 2 - 13 and 44 - 46. Older Arduino

boards with an ATmega8 only support analogWrite() on pins 9, 10, and 11.

The Arduino DUE supports analogWrite() on pins 2 through 13, plus pins DAC0 and DAC1.

Unlike the PWM pins, DAC0 and DAC1 are Digital to Analog converters, and act as true analog

outputs.

You do not need to call pinMode() to set the pin as an output before calling analogWrite().

The analogWrite function has nothing to do with the analog pins or the analogRead function.

Syntax

analogWrite(pin, value)

Parameters

pin: the pin to write to. Allowed data types: int.

value: the duty cycle: between 0 (always off) and 255 (always on). Allowed data types: int

Returns

Nothing

Example Code

Sets the output to the LED proportional to the value read from the potentiometer.

int ledPin = 9; // LED connected to digital pin 9

int analogPin = 3; // potentiometer connected to analog pin 3

http://arduino.cc/en/Tutorial/PWM

66

int val = 0; // variable to store the read value

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the pin as output

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 analogWrite(ledPin, val / 4); // analogRead values go from 0 to 1023,

analogWrite values from 0 to 255

}

Notes and Warnings

The PWM outputs generated on pins 5 and 6 will have higher-than-expected duty cycles. This is

because of interactions with the millis() and delay() functions, which share the same internal

timer used to generate those PWM outputs. This will be noticed mostly on low duty-cycle settings

(e.g. 0 - 10) and may result in a value of 0 not fully turning off the output on pins 5 and 6.

PWM

The Fading example demonstrates the use of analog output (PWM) to fade an LED. It is available

in the File->Sketchbook->Examples->Analog menu of the Arduino software.

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means.

Digital control is used to create a square wave, a signal switched between on and off. This on-off

pattern can simulate voltages in between full on (5 Volts) and off (0 Volts) by changing the portion

of the time the signal spends on versus the time that the signal spends off. The duration of "on time"

is called the pulse width. To get varying analog values, you change, or modulate, that pulse width.

If you repeat this on-off pattern fast enough with an LED for example, the result is as if the signal is

a steady voltage between 0 and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This duration or period is the

inverse of the PWM frequency. In other words, with Arduino's PWM frequency at about 500Hz, the

green lines would measure 2 milliseconds each. A call to analogWrite() is on a scale of 0 - 255,

such that analogWrite(255) requests a 100% duty cycle (always on), and analogWrite(127) is a 50%

duty cycle (on half the time) for example.

https://www.arduino.cc/en/Reference/AnalogWrite

67

Once you get this example running, grab your arduino and shake it back and forth. What you are

doing here is essentially mapping time across the space. To our eyes, the movement blurs each LED

blink into a line. As the LED fades in and out, those little lines will grow and shrink in length. Now

you are seeing the pulse width.

Zero, Due & MKR Family

analogReadResolution() [Zero, Due & MKR Family]

Description

analogReadResolution() is an extension of the Analog API for the Arduino Due, Zero and MKR

Family.

Sets the size (in bits) of the value returned by analogRead(). It defaults to 10 bits (returns values

between 0-1023) for backward compatibility with AVR based boards.

The Due, Zero and MKR Family boards have 12-bit ADC capabilities that can be accessed by

changing the resolution to 12. This will return values from analogRead() between 0 and 4095.

Syntax

analogReadResolution(bits)

Parameters

68

bits: determines the resolution (in bits) of the value returned by the analogRead() function. You

can set this between 1 and 32. You can set resolutions higher than 12 but values returned by

analogRead() will suffer approximation. See the note below for details.

Returns

Nothing

Example Code

The code shows how to use ADC with different resolutions.

void setup() {

 // open a serial connection

 Serial.begin(9600);

}

void loop() {

 // read the input on A0 at default resolution (10 bits)

 // and send it out the serial connection

 analogReadResolution(10);

 Serial.print("ADC 10-bit (default) : ");

 Serial.print(analogRead(A0));

 // change the resolution to 12 bits and read A0

 analogReadResolution(12);

 Serial.print(", 12-bit : ");

 Serial.print(analogRead(A0));

 // change the resolution to 16 bits and read A0

 analogReadResolution(16);

 Serial.print(", 16-bit : ");

 Serial.print(analogRead(A0));

 // change the resolution to 8 bits and read A0

 analogReadResolution(8);

 Serial.print(", 8-bit : ");

 Serial.println(analogRead(A0));

 // a little delay to not hog Serial Monitor

 delay(100);

}

Notes and Warnings

If you set the analogReadResolution() value to a value higher than your board’s capabilities, the

Arduino will only report back at its highest resolution, padding the extra bits with zeros.

For example: using the Due with analogReadResolution(16) will give you an approximated 16-

bit number with the first 12 bits containing the real ADC reading and the last 4 bits padded with

zeros.

If you set the analogReadResolution() value to a value lower than your board’s capabilities, the

extra least significant bits read from the ADC will be discarded.

Using a 16 bit resolution (or any resolution higher than actual hardware capabilities) allows you to

write sketches that automatically handle devices with a higher resolution ADC when these become

available on future boards without changing a line of code.

69

analogWriteResolution() [Zero, Due & MKR Family]

Description

analogWriteResolution() is an extension of the Analog API for the Arduino Due.

analogWriteResolution() sets the resolution of the analogWrite() function. It defaults to 8 bits

(values between 0-255) for backward compatibility with AVR based boards.

The Due has the following hardware capabilities:

 12 pins which default to 8-bit PWM, like the AVR-based boards. These can be changed to

12-bit resolution.

 2 pins with 12-bit DAC (Digital-to-Analog Converter)

By setting the write resolution to 12, you can use analogWrite() with values between 0 and 4095

to exploit the full DAC resolution or to set the PWM signal without rolling over.

The Zero has the following hardware capabilities:

 10 pins which default to 8-bit PWM, like the AVR-based boards. These can be changed to

12-bit resolution.

 1 pin with 10-bit DAC (Digital-to-Analog Converter).

By setting the write resolution to 10, you can use analogWrite() with values between 0 and 1023

to exploit the full DAC resolution

The MKR Family of boards has the following hardware capabilities:

 4 pins which default to 8-bit PWM, like the AVR-based boards. These can be changed from

8 (default) to 12-bit resolution.

 1 pin with 10-bit DAC (Digital-to-Analog Converter)

By setting the write resolution to 12 bits, you can use analogWrite() with values between 0 and

4095 for PWM signals; set 10 bit on the DAC pin to exploit the full DAC resolution of 1024 values.

Syntax

analogWriteResolution(bits)

Parameters

bits: determines the resolution (in bits) of the values used in the analogWrite() function. The

value can range from 1 to 32. If you choose a resolution higher or lower than your board’s hardware

capabilities, the value used in analogWrite() will be either truncated if it’s too high or padded

with zeros if it’s too low. See the note below for details.

Returns

Nothing

70

Example Code

Explain Code

void setup(){

 // open a serial connection

 Serial.begin(9600);

 // make our digital pin an output

 pinMode(11, OUTPUT);

 pinMode(12, OUTPUT);

 pinMode(13, OUTPUT);

}

void loop(){

 // read the input on A0 and map it to a PWM pin

 // with an attached LED

 int sensorVal = analogRead(A0);

 Serial.print("Analog Read) : ");

 Serial.print(sensorVal);

 // the default PWM resolution

 analogWriteResolution(8);

 analogWrite(11, map(sensorVal, 0, 1023, 0 ,255));

 Serial.print(" , 8-bit PWM value : ");

 Serial.print(map(sensorVal, 0, 1023, 0 ,255));

 // change the PWM resolution to 12 bits

 // the full 12 bit resolution is only supported

 // on the Due

 analogWriteResolution(12);

 analogWrite(12, map(sensorVal, 0, 1023, 0, 4095));

 Serial.print(" , 12-bit PWM value : ");

 Serial.print(map(sensorVal, 0, 1023, 0, 4095));

 // change the PWM resolution to 4 bits

 analogWriteResolution(4);

 analogWrite(13, map(sensorVal, 0, 1023, 0, 15));

 Serial.print(", 4-bit PWM value : ");

 Serial.println(map(sensorVal, 0, 1023, 0, 15));

 delay(5);

}

Notes and Warnings

If you set the analogWriteResolution() value to a value higher than your board’s capabilities,

the Arduino will discard the extra bits. For example: using the Due with

analogWriteResolution(16) on a 12-bit DAC pin, only the first 12 bits of the values passed to

analogWrite() will be used and the last 4 bits will be discarded.

If you set the analogWriteResolution() value to a value lower than your board’s capabilities, the

missing bits will be padded with zeros to fill the hardware required size. For example: using the

Due with analogWriteResolution(8) on a 12-bit DAC pin, the Arduino will add 4 zero bits to the 8-

bit value used in analogWrite() to obtain the 12 bits required.

71

Advanced I/O

tone() [Advanced I/O]

Description

Generates a square wave of the specified frequency (and 50% duty cycle) on a pin. A duration can

be specified, otherwise the wave continues until a call to noTone(). The pin can be connected to a

piezo buzzer or other speaker to play tones.

Only one tone can be generated at a time. If a tone is already playing on a different pin, the call to

tone() will have no effect. If the tone is playing on the same pin, the call will set its frequency.

Use of the tone() function will interfere with PWM output on pins 3 and 11 (on boards other than

the Mega).

It is not possible to generate tones lower than 31Hz. For technical details, see Brett Hagman’s notes.

Syntax

tone(pin, frequency)
tone(pin, frequency, duration)

Parameters

pin: the pin on which to generate the tone

frequency: the frequency of the tone in hertz - unsigned int

duration: the duration of the tone in milliseconds (optional) - unsigned long

Returns

Nothing

Notes and Warnings

If you want to play different pitches on multiple pins, you need to call noTone() on one pin before

calling tone() on the next pin.

noTone() [Advanced I/O]

Description

Stops the generation of a square wave triggered by tone(). Has no effect if no tone is being

generated.

Syntax

noTone(pin)

Parameters

https://www.arduino.cc/reference/en/language/functions/advanced-io/noTone
https://github.com/bhagman/Tone#ugly-details

72

pin: the pin on which to stop generating the tone

Returns

Nothing

Notes and Warnings

If you want to play different pitches on multiple pins, you need to call noTone() on one pin before

calling tone() on the next pin.

shiftOut() [Advanced I/O]

Description

Shifts out a byte of data one bit at a time. Starts from either the most (i.e. the leftmost) or least

(rightmost) significant bit. Each bit is written in turn to a data pin, after which a clock pin is pulsed

(taken high, then low) to indicate that the bit is available.

Note- if you’re interfacing with a device that’s clocked by rising edges, you’ll need to make sure

that the clock pin is low before the call to shiftOut(), e.g. with a call to

digitalWrite(clockPin, LOW).

This is a software implementation; see also the SPI library, which provides a hardware

implementation that is faster but works only on specific pins.

Syntax

shiftOut(dataPin, clockPin, bitOrder, value)

Parameters

dataPin: the pin on which to output each bit (int)

clockPin: the pin to toggle once the dataPin has been set to the correct value (int)

bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST. (Most Significant Bit

First, or, Least Significant Bit First)

value: the data to shift out. (byte)

Returns

Nothing

Example Code

For accompanying circuit, see the tutorial on controlling a 74HC595 shift register.

https://arduino.cc/en/Tutorial/ShiftOut
https://www.arduino.cc/en/Reference/SPI

73

//**//

// Name : shiftOutCode, Hello World //

// Author : Carlyn Maw,Tom Igoe //

// Date : 25 Oct, 2006 //

// Version : 1.0 //

// Notes : Code for using a 74HC595 Shift Register //

// : to count from 0 to 255 //

//**

//Pin connected to ST_CP of 74HC595

int latchPin = 8;

//Pin connected to SH_CP of 74HC595

int clockPin = 12;

////Pin connected to DS of 74HC595

int dataPin = 11;

void setup() {

 //set pins to output because they are addressed in the main loop

 pinMode(latchPin, OUTPUT);

 pinMode(clockPin, OUTPUT);

 pinMode(dataPin, OUTPUT);

}

void loop() {

 //count up routine

 for (int j = 0; j < 256; j++) {

 //ground latchPin and hold low for as long as you are transmitting

 digitalWrite(latchPin, LOW);

 shiftOut(dataPin, clockPin, LSBFIRST, j);

 //return the latch pin high to signal chip that it

 //no longer needs to listen for information

 digitalWrite(latchPin, HIGH);

 delay(1000);

 }

}

Notes and Warnings

The dataPin and clockPin must already be configured as outputs by a call to pinMode().

shiftOut is currently written to output 1 byte (8 bits) so it requires a two step operation to output

values larger than 255.

// Do this for MSBFIRST serial

int data = 500;

// shift out highbyte

shiftOut(dataPin, clock, MSBFIRST, (data >> 8));

// shift out lowbyte

shiftOut(dataPin, clock, MSBFIRST, data);

// Or do this for LSBFIRST serial

data = 500;

// shift out lowbyte

shiftOut(dataPin, clock, LSBFIRST, data);

// shift out highbyte

shiftOut(dataPin, clock, LSBFIRST, (data >> 8));

https://www.arduino.cc/reference/en/language/functions/digital-io/pinmode

74

shiftIn() [Advanced I/O]

Description

Shifts in a byte of data one bit at a time. Starts from either the most (i.e. the leftmost) or least

(rightmost) significant bit. For each bit, the clock pin is pulled high, the next bit is read from the

data line, and then the clock pin is taken low.

If you’re interfacing with a device that’s clocked by rising edges, you’ll need to make sure that the

clock pin is low before the first call to shiftIn(), e.g. with a call to digitalWrite(clockPin,

LOW).

Note: this is a software implementation; Arduino also provides an SPI library that uses the hardware

implementation, which is faster but only works on specific pins.

Syntax

byte incoming = shiftIn(dataPin, clockPin, bitOrder)

Parameters

dataPin: the pin on which to input each bit (int)

clockPin: the pin to toggle to signal a read from dataPin

bitOrder: which order to shift in the bits; either MSBFIRST or LSBFIRST. (Most Significant Bit

First, or, Least Significant Bit First)

Returns

the value read (byte)

pulseIn() [Advanced I/O]

Description

Reads a pulse (either HIGH or LOW) on a pin. For example, if value is HIGH, pulseIn() waits

for the pin to go HIGH, starts timing, then waits for the pin to go LOW and stops timing. Returns

the length of the pulse in microseconds. Gives up and returns 0 if no pulse starts within a specified

time out.

The timing of this function has been determined empirically and will probably show errors in longer

pulses. Works on pulses from 10 microseconds to 3 minutes in length.

Syntax

pulseIn(pin, value)

https://www.arduino.cc/en/Reference/SPI

75

pulseIn(pin, value, timeout)

Parameters

pin: the number of the pin on which you want to read the pulse. (int)

value: type of pulse to read: either HIGH or LOW. (int)

timeout (optional): the number of microseconds to wait for the pulse to start; default is one second

(unsigned long)

Returns

the length of the pulse (in microseconds) or 0 if no pulse started before the timeout (unsigned long)

Example Code

The example calculated the time duration of a pulse on pin 7.

int pin = 7;

unsigned long duration;

void setup()

{

 pinMode(pin, INPUT);

}

void loop()

{

 duration = pulseIn(pin, HIGH);

}

pulseInLong() [Advanced I/O]

Description

Reads a pulse (either HIGH or LOW) on a pin. For example, if value is HIGH, pulseInLong()

waits for the pin to go HIGH, starts timing, then waits for the pin to go LOW and stops timing. Returns

the length of the pulse in microseconds or 0 if no complete pulse was received within the timeout.

The timing of this function has been determined empirically and will probably show errors in

shorter pulses. Works on pulses from 10 microseconds to 3 minutes in length. Please also note that

if the pin is already high when the function is called, it will wait for the pin to go LOW and then

HIGH before it starts counting. This routine can be used only if interrupts are activated.

Furthermore the highest resolution is obtained with large intervals.

Syntax

pulseInLong(pin, value)

pulseInLong(pin, value, timeout)

Parameters

https://www.arduino.cc/reference/en/language/variables/constants/constants/
https://www.arduino.cc/reference/en/language/variables/constants/constants/

76

pin: the number of the pin on which you want to read the pulse. (int)

value: type of pulse to read: either HIGH or LOW. (int)

timeout (optional): the number of microseconds to wait for the pulse to start; default is one second

(unsigned long)

Returns

the length of the pulse (in microseconds) or 0 if no pulse started before the timeout (unsigned long)

Example Code

The example calculated the time duration of a pulse on pin 7.

int pin = 7;

unsigned long duration;

void setup() {

 pinMode(pin, INPUT);

}

void loop() {

 duration = pulseInLong(pin, HIGH);

}

Notes and Warnings

This function relies on micros() so cannot be used in noInterrupts() context.

Time

millis() [Time]

Description

Returns the number of milliseconds since the Arduino board began running the current program.

This number will overflow (go back to zero), after approximately 50 days.

Syntax

time = millis()

Parameters

Nothing

Returns

Number of milliseconds since the program started (unsigned long)

https://www.arduino.cc/reference/en/language/functions/interrupts/nointerrupts
https://www.arduino.cc/reference/en/language/variables/constants/constants/
https://www.arduino.cc/reference/en/language/variables/constants/constants/

77

Example Code

The code reads the milllisecond since the Arduino board began.

unsigned long time;

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.print("Time: ");

 time = millis();

 Serial.println(time); //prints time since program started

 delay(1000); // wait a second so as not to send massive amounts of

data

}

Notes and Warnings

Please note that the return value for millis() is an unsigned long, logic errors may occur if a

programmer tries to do arithmetic with smaller data types such as int’s. Even signed long may

encounter errors as its maximum value is half that of its unsigned counterpart.

micros() [Time]

Description

Returns the number of microseconds since the Arduino board began running the current program.

This number will overflow (go back to zero), after approximately 70 minutes. On 16 MHz Arduino

boards (e.g. Duemilanove and Nano), this function has a resolution of four microseconds (i.e. the

value returned is always a multiple of four). On 8 MHz Arduino boards (e.g. the LilyPad), this

function has a resolution of eight microseconds.

Syntax

time = micros()

Parameters

Nothing

Returns

Returns the number of microseconds since the Arduino board began running the current

program.(unsigned long)

Example Code

The code returns the number of microseconds since the Arduino board began.

78

unsigned long time;

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.print("Time: ");

 time = micros();

 Serial.println(time); //prints time since program started

 delay(1000); // wait a second so as not to send massive amounts of

data

}

Notes and Warnings

There are 1,000 microseconds in a millisecond and 1,000,000 microseconds in a second.

delay() [Time]

Description

Pauses the program for the amount of time (in milliseconds) specified as parameter. (There are 1000

milliseconds in a second.)

Syntax

delay(ms)

Parameters

ms: the number of milliseconds to pause (unsigned long)

Returns

Nothing

Example Code

The code pauses the program for one second before toggling the output pin.

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

79

Notes and Warnings

While it is easy to create a blinking LED with the delay() function, and many sketches use short

delays for such tasks as switch debouncing, the use of delay() in a sketch has significant

drawbacks. No other reading of sensors, mathematical calculations, or pin manipulation can go on

during the delay function, so in effect, it brings most other activity to a halt. For alternative

approaches to controlling timing see the millis() function and the sketch sited below. More

knowledgeable programmers usually avoid the use of delay() for timing of events longer than 10’s

of milliseconds unless the Arduino sketch is very simple.

Certain things do go on while the delay() function is controlling the Atmega chip however, because

the delay function does not disable interrupts. Serial communication that appears at the RX pin is

recorded, PWM (analogWrite) values and pin states are maintained, and interrupts will work as they

should.

delayMicroseconds() [Time]

Description

Pauses the program for the amount of time (in microseconds) specified as parameter. There are a

thousand microseconds in a millisecond, and a million microseconds in a second.

Currently, the largest value that will produce an accurate delay is 16383. This could change in

future Arduino releases. For delays longer than a few thousand microseconds, you should use

delay() instead.

Syntax

delayMicroseconds(us)

Parameters

us: the number of microseconds to pause (unsigned int)

Returns

Nothing

Example Code

The code configures pin number 8 to work as an output pin. It sends a train of pulses of

approximately 100 microseconds period. The approximation is due to execution of the other

instructions in the code.

int outPin = 8; // digital pin 8

void setup()

{

 pinMode(outPin, OUTPUT); // sets the digital pin as output

}

void loop()

https://www.arduino.cc/reference/en/language/functions/time/millis
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt

80

{

 digitalWrite(outPin, HIGH); // sets the pin on

 delayMicroseconds(50); // pauses for 50 microseconds

 digitalWrite(outPin, LOW); // sets the pin off

 delayMicroseconds(50); // pauses for 50 microseconds

}

Notes and Warnings

This function works very accurately in the range 3 microseconds and up. We cannot assure that

delayMicroseconds will perform precisely for smaller delay-times.

As of Arduino 0018, delayMicroseconds() no longer disables interrupts.

Math

min() [Math]

Description

Calculates the minimum of two numbers.

Syntax

min(x, y)

Parameters

x: the first number, any data type

y: the second number, any data type

Returns

The smaller of the two numbers.

Example Code

The code ensures that it never gets above 100.

sensVal = min(sensVal, 100); // assigns sensVal to the smaller of sensVal or 100

 // ensuring that it never gets above 100.

Notes and Warnings

Perhaps counter-intuitively, max() is often used to constrain the lower end of a variable’s range,

while min() is used to constrain the upper end of the range.

Because of the way the min() function is implemented, avoid using other functions inside the

brackets, it may lead to incorrect results

81

min(a++, 100); // avoid this - yields incorrect results

min(a, 100);

a++; // use this instead - keep other math outside the function

max() [Math]

Description

Calculates the maximum of two numbers.

Syntax

max(x, y)

Parameters

x: the first number, any data type y: the second number, any data type

Returns

The larger of the two parameter values.

Example Code

The code ensures that sensVal is at least 20.

sensVal = max(sensVal, 20); // assigns sensVal to the larger of sensVal or 20

 // (effectively ensuring that it is at least 20)

Notes and Warnings

Perhaps counter-intuitively, max() is often used to constrain the lower end of a variable’s range,

while min() is used to constrain the upper end of the range.

Because of the way the max() function is implemented, avoid using other functions inside the

brackets, it may lead to incorrect results

max(a--, 0); // avoid this - yields incorrect results

max(a, 0); // use this instead -

a--; // keep other math outside the function

abs() [Math]

Description

Calculates the absolute value of a number.

82

Syntax

abs(x)

Parameters

x: the number

Returns

x: if x is greater than or equal to 0.

-x: if x is less than 0.

Notes and Warnings

Because of the way the abs() function is implemented, avoid using other functions inside the

brackets, it may lead to incorrect results.

abs(a++); // avoid this - yields incorrect results

abs(a); // use this instead -

a++; // keep other math outside the function

constrain() [Math]

Description

Constrains a number to be within a range.

Syntax

constrain(x, a, b)

Parameters

x: the number to constrain, all data types a: the lower end of the range, all data types b: the upper

end of the range, all data types

Returns

x: if x is between a and b

a: if x is less than a

b: if x is greater than b

Example Code

The code limits the sensor values to between 10 to 150.

sensVal = constrain(sensVal, 10, 150); // limits range of sensor values to

between 10 and 150

83

map() [Math]

Description

Re-maps a number from one range to another. That is, a value of fromLow would get mapped to

toLow, a value of fromHigh to toHigh, values in-between to values in-between, etc.

Does not constrain values to within the range, because out-of-range values are sometimes intended

and useful. The constrain() function may be used either before or after this function, if limits to

the ranges are desired.

Note that the "lower bounds" of either range may be larger or smaller than the "upper bounds" so

the map() function may be used to reverse a range of numbers, for example

y = map(x, 1, 50, 50, 1);

The function also handles negative numbers well, so that this example

y = map(x, 1, 50, 50, -100);

is also valid and works well.

The map() function uses integer math so will not generate fractions, when the math might indicate

that it should do so. Fractional remainders are truncated, and are not rounded or averaged.

Syntax

map(value, fromLow, fromHigh, toLow, toHigh)

Parameters

value: the number to map

fromLow: the lower bound of the value’s current range

fromHigh: the upper bound of the value’s current range

toLow: the lower bound of the value’s target range

toHigh: the upper bound of the value’s target range

Returns

The mapped value.

Example Code

/* Map an analog value to 8 bits (0 to 255) */

void setup() {}

void loop()

{

 int val = analogRead(0);

 val = map(val, 0, 1023, 0, 255);

 analogWrite(9, val);

}

84

Appendix

For the mathematically inclined, here’s the whole function

long map(long x, long in_min, long in_max, long out_min, long out_max)

{

 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;

}

pow() [Math]

Description

Calculates the value of a number raised to a power. Pow() can be used to raise a number to a

fractional power. This is useful for generating exponential mapping of values or curves.

Syntax

pow(base, exponent)

Parameters

base: the number (float)

exponent: the power to which the base is raised (float)

Returns

The result of the exponentiation. (double)

Example Code

See the (fscale) function in the code library.

sqrt() [Math]

Calculates the square root of a number.

Description

Syntax

sqrt(x)

Parameters

x: the number, any data type

http://arduino.cc/playground/Main/Fscale

85

Returns

The number’s square root. (double)

sq() [Math]

Description

Calculates the square of a number: the number multiplied by itself.

Syntax

sq(x)

Parameters

x: the number, any data type

Returns

The square of the number. (double)

Trigonometry

sin() [Trigonometry]

Description

Calculates the sine of an angle (in radians). The result will be between -1 and 1.

Syntax

sin(rad)

Parameters

rad: The angle in Radians (float).

Returns

The sine of the angle (double).

86

cos() [Trigonometry]

Description

Calculates the cosine of an angle (in radians). The result will be between -1 and 1.

Syntax

cos(rad)

Parameters

rad: The angle in Radians (float).

Returns

The cos of the angle (double).

tan() [Trigonometry]

Description

Calculates the tangent of an angle (in radians). The result will be between negative infinity and

infinity.

Syntax

tan(rad)

Parameters

rad: The angle in Radians (float).

Returns

The tangent of the angle (double).

Characters

isAlphaNumeric() [Characters]

Description

Analyse if a char is alphanumeric (that is a letter or a numbers). Returns true if thisChar contains

either a number or a letter.

87

Syntax

`isAlphaNumeric(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is alphanumeric.

Example Code

if (isAlphaNumeric(this)) // tests if this isa letter or a number

{

 Serial.println("The character is alphanumeric");

}

else

{

 Serial.println("The character is not alphanumeric");

}

isAlpha() [Characters]

Description

Analyse if a char is alpha (that is a letter). Returns true if thisChar contains a letter.

Syntax

isAlpha(thisChar)

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is alpha.

Example Code

if (isAlpha(this)) // tests if this is a letter

{

 Serial.println("The character is a letter");

}

else

{

 Serial.println("The character is not a letter");

}

88

isAscii() [Characters]

Description

Analyse if a char is Ascii. Returns true if thisChar contains an Ascii character.

Syntax

`isAscii(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is Ascii.

Example Code

if (isAscii(this)) // tests if this is an Ascii character

{

 Serial.println("The character is Ascii");

}

else

{

 Serial.println("The character is not Ascii");

}

isWhitespace() [Characters]

Description

Analyse if a char is a white space, that is space, formfeed ('\f'), newline ('\n'), carriage return ('\r'),

horizontal tab ('\t'), and vertical tab ('\v')). Returns true if thisChar contains a white space.

Syntax

`isWhitespace(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is a white space.

89

Example Code

if (isWhitespace(this)) // tests if this is a white space

{

 Serial.println("The character is a white space");

}

else

{

 Serial.println("The character is not a white space");

}

isControl() [Characters]

Description

Analyse if a char is a control character. Returns true if thisChar is a control character.

Syntax

`isControl(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is a control character.

Example Code

if (isControl(this)) // tests if this is a control character

{

 Serial.println("The character is a control character");

}

else

{

 Serial.println("The character is not a control character");

}

isDigit() [Characters]

Description

Analyse if a char is a digit (that is a number). Returns true if thisChar is a number.

Syntax

isDigit(thisChar)

90

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is a number.

Example Code

if (isDigit(this)) // tests if this is a digit

{

 Serial.println("The character is a number");

}

else

{

 Serial.println("The character is not a number");

}

isGraph() [Characters]

Description

Analyse if a char is printable with some content (space is printable but has no content). Returns true

if thisChar is printable.

Syntax

`isGraph(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is printable.

Example Code

if (isGraph(this)) // tests if this is a printable character but not a

blank space.

{

 Serial.println("The character is printable");

}

else

{

 Serial.println("The character is not printable");

}

91

isLowerCase() [Characters]

Description

Analyse if a char is lower case (that is a letter in lower case). Returns true if thisChar contains a

letter in lower case.

Syntax

`isLowerCase(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is lower case.

Example Code

if (isLowerCase(this)) // tests if this is a lower case letter

{

 Serial.println("The character is lower case");

}

else

{

 Serial.println("The character is not lower case");

}

isPrintable() [Characters]

Description

Analyse if a char is printable (that is any character that produces an output, even a blank space).

Returns true if thisChar is printable.

Syntax

`isAlpha(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is printable.

92

Example Code

if (isPrintable(this)) // tests if this is printable char

{

 Serial.println("The character is printable");

}

else

{

 Serial.println("The character is not printable");

}

isPunct() [Characters]

Description

Analyse if a char is punctuation (that is a comma, a semicolon, an exlamation mark and so on).

Returns true if thisChar is punctuation.

Syntax

`isPunct(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is a punctuation.

Example Code

if (isPunct(this)) // tests if this is a punctuation character

{

 Serial.println("The character is a punctuation");

}

else

{

 Serial.println("The character is not a punctuation");

}

isSpace() [Characters]

Description

Analyse if a char is the space character. Returns true if thisChar contains the space character.

Syntax

`isSpace(thisChar)`

93

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is a space.

Example Code

if (isSpace(this)) // tests if this is the space character

{

 Serial.println("The character is a space");

}

else

{

 Serial.println("The character is not a space");

}

isUpperCase() [Characters]

Description

Analyse if a char is upper case (that is a letter in upper case). Returns true if thisChar is upper case.

Syntax

`isUpperCase(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is upper case.

Example Code

if (isUpperCase(this)) // tests if this is an upeer case letter

{

 Serial.println("The character is upper case");

}

else

{

 Serial.println("The character is not upper case");

}

94

isHexadecimalDigit() [Characters]

Description

Analyse if a char is an hexadecimal digit (A-F, 0-9). Returns true if thisChar contains an

hexadecimal digit.

Syntax

`isHexadecimalDigit(thisChar)`

Parameters

thisChar: variable. Allowed data types: char

Returns

true: if thisChar is an hexadecimal digit.

Example Code

if (isHexadecimalDigit(this)) // tests if this is an hexadecimal digit

{

 Serial.println("The character is an hexadecimal digit");

}

else

{

 Serial.println("The character is not an hexadecimal digit");

}

Random Numbers

randomSeed() [Random Numbers]

Description

randomSeed() initializes the pseudo-random number generator, causing it to start at an arbitrary

point in its random sequence. This sequence, while very long, and random, is always the same.

If it is important for a sequence of values generated by random() to differ, on subsequent

executions of a sketch, use randomSeed() to initialize the random number generator with a fairly

random input, such as analogRead() on an unconnected pin.

Conversely, it can occasionally be useful to use pseudo-random sequences that repeat exactly. This

can be accomplished by calling randomSeed() with a fixed number, before starting the random

sequence.

Parameters

seed - number to initialize the pseudo-random sequence (unsigned long).

95

Returns

Nothing

Example Code

The code explanation required.

long randNumber;

void setup(){

 Serial.begin(9600);

 randomSeed(analogRead(0));

}

void loop(){

 randNumber = random(300);

 Serial.println(randNumber);

 delay(50);

}

random() [Random Numbers]

Description

The random function generates pseudo-random numbers.

Syntax

random(max)
random(min, max)

Parameters

min - lower bound of the random value, inclusive (optional)

max - upper bound of the random value, exclusive

Returns

A random number between min and max-1 (long) .

Example Code

The code generates random numbers and displays them.

long randNumber;

void setup(){

 Serial.begin(9600);

96

 // if analog input pin 0 is unconnected, random analog

 // noise will cause the call to randomSeed() to generate

 // different seed numbers each time the sketch runs.

 // randomSeed() will then shuffle the random function.

 randomSeed(analogRead(0));

}

void loop() {

 // print a random number from 0 to 299

 randNumber = random(300);

 Serial.println(randNumber);

 // print a random number from 10 to 19

 randNumber = random(10, 20);

 Serial.println(randNumber);

 delay(50);

}

Notes and Warnings

If it is important for a sequence of values generated by random() to differ, on subsequent

executions of a sketch, use randomSeed() to initialize the random number generator with a fairly

random input, such as analogRead() on an unconnected pin.

Conversely, it can occasionally be useful to use pseudo-random sequences that repeat exactly. This

can be accomplished by calling randomSeed() with a fixed number, before starting the random

sequence.

The max parameter should be chosen according to the data type of the variable in which the value is

stored. In any case, the absolute maximum is bound to the long nature of the value generated (32

bit - 2,147,483,647). Setting max to a higher value won’t generate an error during compilation, but

during sketch execution the numbers generated will not be as expected.

Bits and Bytes

lowByte() [Bits and Bytes]

Description

Extracts the low-order (rightmost) byte of a variable (e.g. a word).

Syntax

lowByte(x)

Parameters

x: a value of any type

97

Returns

byte

highByte() [Bits and Bytes]

Description

Extracts the high-order (leftmost) byte of a word (or the second lowest byte of a larger data type).

Syntax

highByte(x)

Parameters

x: a value of any type

Returns

byte

bitRead() [Bits and Bytes]

Description

Reads a bit of a number.

Syntax

bitRead(x, n)

Parameters

x: the number from which to read

n: which bit to read, starting at 0 for the least-significant (rightmost) bit

Returns

the value of the bit (0 or 1).

98

bitWrite() [Bits and Bytes]

Description

Writes a bit of a numeric variable.

Syntax

bitWrite(x, n, b)

Parameters

x: the numeric variable to which to write

n: which bit of the number to write, starting at 0 for the least-significant (rightmost) bit

b: the value to write to the bit (0 or 1)

Returns

Nothing

bitSet() [Bits and Bytes]

Sets (writes a 1 to) a bit of a numeric variable.

Description

Syntax

bitSet(x, n)

Parameters

x: the numeric variable whose bit to set

n: which bit to set, starting at 0 for the least-significant (rightmost) bit

Returns

Nothing

bitClear() [Bits and Bytes]

Description

Clears (writes a 0 to) a bit of a numeric variable.

Syntax

bitClear(x, n)

99

Parameters

x: the numeric variable whose bit to clear

n: which bit to clear, starting at 0 for the least-significant (rightmost) bit

Returns

Nothing

bit() [Bits and Bytes]

Description

Computes the value of the specified bit (bit 0 is 1, bit 1 is 2, bit 2 is 4, etc.).

Syntax

bit(n)

Parameters

n: the bit whose value to compute

Returns

The value of the bit.

External Interrupts

attachInterrupt() [External Interrupts]

Description

Digital Pins With Interrupts

The first parameter to attachInterrupt is an interrupt number. Normally you should use

digitalPinToInterrupt(pin) to translate the actual digital pin to the specific interrupt number. For

example, if you connect to pin 3, use digitalPinToInterrupt(3) as the first parameter to

attachInterrupt.

Board Digital Pins Usable For Interrupts

Uno, Nano, Mini, other 328-

based
2, 3

Mega, Mega2560, MegaADK 2, 3, 18, 19, 20, 21

Micro, Leonardo, other 32u4-

based
0, 1, 2, 3, 7

Zero all digital pins, except 4

MKR1000 Rev.1 0, 1, 4, 5, 6, 7, 8, 9, A1, A2

100

Board Digital Pins Usable For Interrupts

Due all digital pins

101
all digital pins (Only pins 2, 5, 7, 8, 10, 11, 12, 13 work with

CHANGE)

Notes and Warnings

Note

Inside the attached function, delay() won’t work and the value returned by millis() will not

increment. Serial data received while in the function may be lost. You should declare as volatile any

variables that you modify within the attached function. See the section on ISRs below for more

information.

Using Interrupts

Interrupts are useful for making things happen automatically in microcontroller programs, and can

help solve timing problems. Good tasks for using an interrupt may include reading a rotary encoder,

or monitoring user input.

If you wanted to insure that a program always caught the pulses from a rotary encoder, so that it

never misses a pulse, it would make it very tricky to write a program to do anything else, because

the program would need to constantly poll the sensor lines for the encoder, in order to catch pulses

when they occurred. Other sensors have a similar interface dynamic too, such as trying to read a

sound sensor that is trying to catch a click, or an infrared slot sensor (photo-interrupter) trying to

catch a coin drop. In all of these situations, using an interrupt can free the microcontroller to get

some other work done while not missing the input.

About Interrupt Service Routines

ISRs are special kinds of functions that have some unique limitations most other functions do not

have. An ISR cannot have any parameters, and they shouldn’t return anything.

Generally, an ISR should be as short and fast as possible. If your sketch uses multiple ISRs, only

one can run at a time, other interrupts will be executed after the current one finishes in an order that

depends on the priority they have. millis() relies on interrupts to count, so it will never increment

inside an ISR. Since delay() requires interrupts to work, it will not work if called inside an ISR.

micros() works initially, but will start behaving erratically after 1-2 ms. delayMicroseconds() does

not use any counter, so it will work as normal.

Typically global variables are used to pass data between an ISR and the main program. To make

sure variables shared between an ISR and the main program are updated correctly, declare them as

volatile.

For more information on interrupts, see Nick Gammon’s notes.

Syntax

attachInterrupt(digitalPinToInterrupt(pin), ISR, mode); (recommended)

attachInterrupt(interrupt, ISR, mode); (not recommended)

attachInterrupt(pin, ISR, mode); (not recommended Arduino Due, Zero, MKR1000, 101

only)

http://gammon.com.au/interrupts

101

Parameters

interrupt: the number of the interrupt (int)

pin: the pin number (Arduino Due, Zero, MKR1000 only)

ISR: the ISR to call when the interrupt occurs; this function must take no parameters and return

nothing. This function is sometimes referred to as an interrupt service routine.

mode: defines when the interrupt should be triggered. Four constants are predefined as valid values:

 LOW to trigger the interrupt whenever the pin is low,

 CHANGE to trigger the interrupt whenever the pin changes value

 RISING to trigger when the pin goes from low to high,

 FALLING for when the pin goes from high to low.

The Due, Zero and MKR1000 boards allows also:

 HIGH to trigger the interrupt whenever the pin is high.

Returns

Nothing

Example Code

const byte ledPin = 13;

const byte interruptPin = 2;

volatile byte state = LOW;

void setup() {

 pinMode(ledPin, OUTPUT);

 pinMode(interruptPin, INPUT_PULLUP);

 attachInterrupt(digitalPinToInterrupt(interruptPin), blink, CHANGE);

}

void loop() {

 digitalWrite(ledPin, state);

}

void blink() {

 state = !state;

}

Interrupt Numbers

Normally you should use digitalPinToInterrupt(pin), rather than place an interrupt number directly

into your sketch. The specific pins with interrupts, and their mapping to interrupt number varies on

each type of board. Direct use of interrupt numbers may seem simple, but it can cause compatibility

trouble when your sketch is run on a different board.

However, older sketches often have direct interrupt numbers. Often number 0 (for digital pin 2) or

number 1 (for digital pin 3) were used. The table below shows the available interrupt pins on

various boards.

Note that in the table below, the interrupt numbers refer to the number to be passed to

attachInterrupt(). For historical reasons, this numbering does not always correspond directly to the

interrupt numbering on the atmega chip (e.g. int.0 corresponds to INT4 on the Atmega2560 chip).

Board int.0 int.1 int.2 int.3 int.4 int.5

102

Board int.0 int.1 int.2 int.3 int.4 int.5

Uno, Ethernet 2 3

Mega2560 2 3 21 20 19 18

32u4 based (e.g Leonardo, Micro) 3 2 0 1 7

For Due, Zero, MKR1000 and 101 boards the interrupt number = pin number.

detachInterrupt() [External Interrupts]

Description

Turns off the given interrupt.

Syntax

detachInterrupt()

detachInterrupt(pin) (Arduino Due only)

Parameters

interrupt: the number of the interrupt to disable (see attachInterrupt() for more details).

pin: the pin number of the interrupt to disable (Arduino Due only)

Returns

Nothing

Interrupts

interrupts() [Interrupts]

Description

Re-enables interrupts (after they’ve been disabled by nointerrupts(). Interrupts allow certain

important tasks to happen in the background and are enabled by default. Some functions will not

work while interrupts are disabled, and incoming communication may be ignored. Interrupts can

slightly disrupt the timing of code, however, and may be disabled for particularly critical sections of

code.

Syntax

interrupts()

https://www.arduino.cc/reference/en/language/functions/interrupts/nointerrupts
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt

103

Parameters

Nothing

Returns

Nothing

Example Code

The code enables Interrupts.

void setup() {}

void loop()

{

 noInterrupts();

 // critical, time-sensitive code here

 interrupts();

 // other code here

}

noInterrupts() [Interrupts]

Description

Disables interrupts (you can re-enable them with interrupts()). Interrupts allow certain important

tasks to happen in the background and are enabled by default. Some functions will not work while

interrupts are disabled, and incoming communication may be ignored. Interrupts can slightly disrupt

the timing of code, however, and may be disabled for particularly critical sections of code.

Syntax

noInterrupts()

Parameters

Nothing

Returns

Nothing

Example Code

The code shows how to enable interrupts.

void setup() {}

void loop()

104

{

noInterrupts();

// critical, time-sensitive code here

interrupts();

// other code here

}

Communication

Serial [Communication]

Description

Used for communication between the Arduino board and a computer or other devices. All Arduino

boards have at least one serial port (also known as a UART or USART): Serial. It communicates on

digital pins 0 (RX) and 1 (TX) as well as with the computer via USB. Thus, if you use these

functions, you cannot also use pins 0 and 1 for digital input or output.

You can use the Arduino environment’s built-in serial monitor to communicate with an Arduino

board. Click the serial monitor button in the toolbar and select the same baud rate used in the call to

begin().

Serial communication on pins TX/RX uses TTL logic levels (5V or 3.3V depending on the board).

Don’t connect these pins directly to an RS232 serial port; they operate at +/- 12V and can damage

your Arduino board.

The Arduino Mega has three additional serial ports: Serial1 on pins 19 (RX) and 18 (TX),

Serial2 on pins 17 (RX) and 16 (TX), Serial3 on pins 15 (RX) and 14 (TX). To use these pins to

communicate with your personal computer, you will need an additional USB-to-serial adaptor, as

they are not connected to the Mega’s USB-to-serial adaptor. To use them to communicate with an

external TTL serial device, connect the TX pin to your device’s RX pin, the RX to your device’s

TX pin, and the ground of your Mega to your device’s ground.

The Arduino DUE has three additional 3.3V TTL serial ports: Serial1 on pins 19 (RX) and 18

(TX); Serial2 on pins 17 (RX) and 16 (TX), Serial3 on pins 15 (RX) and 14 (TX). Pins 0 and 1

are also connected to the corresponding pins of the ATmega16U2 USB-to-TTL Serial chip, which

is connected to the USB debug port. Additionally, there is a native USB-serial port on the SAM3X

chip, SerialUSB'.

The Arduino Leonardo board uses Serial1 to communicate via TTL (5V) serial on pins 0 (RX)

and 1 (TX). Serial is reserved for USB CDC communication. For more information, refer to the

Leonardo getting started page and hardware page.

Functions

If (Serial)

available()

availableForWrite()

begin()

end()

find()

findUntil()

flush()

parseFloat()

parseInt()

peek()

print()

println()

read()

readBytes()

readBytesUntil()

setTimeout()

write()

serialEvent()

https://www.arduino.cc/reference/en/language/functions/communication/serial/write
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin
https://www.arduino.cc/reference/en/language/functions/communication/serial/finduntil
https://www.arduino.cc/reference/en/language/functions/communication/serial/read
https://www.arduino.cc/reference/en/language/functions/communication/serial/end
https://www.arduino.cc/reference/en/language/functions/communication/serial/readbytesuntil
https://www.arduino.cc/reference/en/language/functions/communication/serial/ifserial
https://www.arduino.cc/reference/en/language/functions/communication/serial/parseint
https://www.arduino.cc/reference/en/language/functions/communication/serial/flush
https://www.arduino.cc/reference/en/language/functions/communication/serial/print
https://www.arduino.cc/reference/en/language/functions/communication/serial/serialevent
https://www.arduino.cc/reference/en/language/functions/communication/serial/availableforwrite
https://www.arduino.cc/reference/en/language/functions/communication/serial/parsefloat
https://www.arduino.cc/reference/en/language/functions/communication/serial/println
https://www.arduino.cc/reference/en/language/functions/communication/serial/readbytes
https://www.arduino.cc/reference/en/language/functions/communication/serial/settimeout
https://www.arduino.cc/reference/en/language/functions/communication/serial/available
https://www.arduino.cc/reference/en/language/functions/communication/serial/find
https://www.arduino.cc/reference/en/language/functions/communication/serial/peek

105

if(Serial)

Description

Indicates if the specified Serial port is ready.

On the Leonardo, if (Serial) indicates whether or not the USB CDC serial connection is open.

For all other instances, including if (Serial1) on the Leonardo, this will always return true.

This was introduced in Arduino IDE 1.0.1.

Syntax

All boards:

if (Serial)

Arduino Leonardo specific:

if (Serial1)

Arduino Mega specific:

if (Serial1)
if (Serial2)
if (Serial3)

Parameters

Nothing

Returns

boolean : returns true if the specified serial port is available. This will only return false if querying

the Leonardo’s USB CDC serial connection before it is ready.

Example Code

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for native USB

 }

}

void loop() {

 //proceed normally

}

106

Serial.available()

Description

Get the number of bytes (characters) available for reading from the serial port. This is data that’s

already arrived and stored in the serial receive buffer (which holds 64 bytes). available() inherits

from the Stream utility class.

Syntax

Serial.available()

Arduino Mega only:

Serial1.available()
Serial2.available()
Serial3.available()

Parameters

None

Returns

The number of bytes available to read .

Example Code

The following code returns a character received through the serial port.

int incomingByte = 0; // for incoming serial data

void setup() {

 Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

}

void loop() {

 // reply only when you receive data:

 if (Serial.available() > 0) {

 // read the incoming byte:

 incomingByte = Serial.read();

 // say what you got:

 Serial.print("I received: ");

 Serial.println(incomingByte, DEC);

 }

}

Arduino Mega example: This code sends data received in one serial port of the Arduino Mega to

another. This can be used, for example, to connect a serial device to the computer through the

Arduino board.

void setup() {

 Serial.begin(9600);

 Serial1.begin(9600);

107

}

void loop() {

 // read from port 0, send to port 1:

 if (Serial.available()) {

 int inByte = Serial.read();

 Serial1.print(inByte, DEC);

 }

 // read from port 1, send to port 0:

 if (Serial1.available()) {

 int inByte = Serial1.read();

 Serial.print(inByte, DEC);

 }

}

Serial.availableForWrite()

Description

Get the number of bytes (characters) available for writing in the serial buffer without blocking the

write operation.

Syntax

Serial.availableForWrite()

Arduino Mega only:

Serial1.availableForWrite()
Serial2.availableForWrite()
Serial3.availableForWrite()

Parameters

Nothing

Returns

The number of bytes available to write.

Serial.begin()

Description

Sets the data rate in bits per second (baud) for serial data transmission. For communicating with the

computer, use one of these rates: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400,

57600, or 115200. You can, however, specify other rates - for example, to communicate over pins 0

and 1 with a component that requires a particular baud rate.

An optional second argument configures the data, parity, and stop bits. The default is 8 data bits, no

parity, one stop bit.

108

Syntax

Serial.begin(speed) Serial.begin(speed, config)

Arduino Mega only:

Serial1.begin(speed)
Serial2.begin(speed)
Serial3.begin(speed)
Serial1.begin(speed, config)
Serial2.begin(speed, config)
Serial3.begin(speed, config)

Parameters

speed: in bits per second (baud) - long

config: sets data, parity, and stop bits. Valid values are

SERIAL_5N1
SERIAL_6N1
SERIAL_7N1

SERIAL_8N1 (the default)
SERIAL_5N2
SERIAL_6N2
SERIAL_7N2
SERIAL_8N2
SERIAL_5E1
SERIAL_6E1
SERIAL_7E1
SERIAL_8E1
SERIAL_5E2
SERIAL_6E2
SERIAL_7E2
SERIAL_8E2
SERIAL_5O1
SERIAL_6O1
SERIAL_7O1
SERIAL_8O1
SERIAL_5O2
SERIAL_6O2
SERIAL_7O2
SERIAL_8O2

Returns

Nothing

Example Code

void setup() {

 Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

}

void loop() {}

Arduino Mega example:

// Arduino Mega using all four of its Serial ports

// (Serial, Serial1, Serial2, Serial3),

109

// with different baud rates:

void setup(){

 Serial.begin(9600);

 Serial1.begin(38400);

 Serial2.begin(19200);

 Serial3.begin(4800);

 Serial.println("Hello Computer");

 Serial1.println("Hello Serial 1");

 Serial2.println("Hello Serial 2");

 Serial3.println("Hello Serial 3");

}

void loop() {}

Thanks to Jeff Gray for the mega example

Serial.end()

Description

Disables serial communication, allowing the RX and TX pins to be used for general input and

output. To re-enable serial communication, call Serial.begin().

Syntax

Serial.end()

Arduino Mega only:

Serial1.end()
Serial2.end()
Serial3.end()

Parameters

Nothing

Returns

Nothing

Serial.find()

Description

Serial.find() reads data from the serial buffer until the target string of given length is found. The

function returns true if target string is found, false if it times out.

Serial.find() inherits from the stream utility class.

https://www.arduino.cc/reference/en/language/functions/communication/serial/begin
https://www.arduino.cc/reference/en/language/functions/communication/stream

110

Syntax

Serial.find(target)

Parameters

target : the string to search for (char)

Returns

Boolean

Serial.findUntil()

Description

Serial.findUntil() reads data from the serial buffer until a target string of given length or

terminator string is found.

The function returns true if the target string is found, false if it times out.

Serial.findUntil() inherits from the Stream utility class.

Syntax

Serial.findUntil(target, terminal)

Parameters

target : the string to search for (char) terminal : the terminal string in the search (char)

Returns

Boolean

Serial.flush()

Description

Waits for the transmission of outgoing serial data to complete. (Prior to Arduino 1.0, this instead

removed any buffered incoming serial data.)

flush() inherits from the Stream utility class.

Syntax

Serial.flush()

https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/serial/flush

111

Arduino Mega only:

Serial1.flush()
Serial2.flush()
Serial3.flush()

Parameters

Nothing

Returns

Nothing

Serial.parseFloat()

Description

Serial.parseFloat() returns the first valid floating point number from the Serial buffer.

Characters that are not digits (or the minus sign) are skipped. parseFloat() is terminated by the

first character that is not a floating point number.

Serial.parseFloat() inherits from the Stream utility class.

Syntax

Serial.parseFloat()

Parameters

Nothing

Returns

Float

Serial.parseInt()

Description

Looks for the next valid integer in the incoming serial stream.parseInt() inherits from the

Stream utility class.

In particular:

 Initial characters that are not digits or a minus sign, are skipped;

 Parsing stops when no characters have been read for a configurable time-out value, or a non-digit is

read;

 If no valid digits were read when the time-out (see Serial.setTimeout()) occurs, 0 is returned;

https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream

112

Syntax

Serial.parseInt() Serial.parseInt(char skipChar)

Arduino Mega only:

Serial1.parseInt()
Serial2.parseInt()
Serial3.parseInt()

Parameters
skipChar: used to skip the indicated char in the search. Used for example to skip thousands divider.

Returns

long : the next valid integer

Serial.peek()

Description

Returns the next byte (character) of incoming serial data without removing it from the internal serial

buffer. That is, successive calls to peek() will return the same character, as will the next call to

read(). peek() inherits from the Stream utility class.

Syntax

Serial.peek()

Arduino Mega only:

Serial1.peek()
Serial2.peek()
Serial3.peek()

Parameters

Nothing

Returns

The first byte of incoming serial data available (or -1 if no data is available) - int

Serial.print()

Description

Prints data to the serial port as human-readable ASCII text. This command can take many forms.

Numbers are printed using an ASCII character for each digit. Floats are similarly printed as ASCII

digits, defaulting to two decimal places. Bytes are sent as a single character. Characters and strings

are sent as is. For example-

https://www.arduino.cc/reference/en/language/functions/communication/stream

113

 Serial.print(78) gives "78"
 Serial.print(1.23456) gives "1.23"
 Serial.print('N') gives "N"
 `Serial.print("Hello world.") gives "Hello world." `

An optional second parameter specifies the base (format) to use; permitted values are BIN(binary,

or base 2), OCT(octal, or base 8), DEC(decimal, or base 10), HEX(hexadecimal, or

base 16). For floating point numbers, this parameter specifies the number of decimal places to use.

For example-

 Serial.print(78, BIN) gives "1001110"
 Serial.print(78, OCT) gives "116"
 Serial.print(78, DEC) gives "78"
 Serial.print(78, HEX) gives "4E"
 Serial.println(1.23456, 0) gives "1"
 Serial.println(1.23456, 2) gives "1.23"
 Serial.println(1.23456, 4) gives "1.2346"

You can pass flash-memory based strings to Serial.print() by wrapping them with F(). For example:

Serial.print(F(“Hello World”))

To send a single byte, use Serial.write().

Syntax

Serial.print(val)
Serial.print(val, format)

Parameters

val: the value to print - any data type

Returns

size_t: print() returns the number of bytes written, though reading that number is optional.

Example Code

/*

Uses a FOR loop for data and prints a number in various formats.

*/

int x = 0; // variable

void setup() {

 Serial.begin(9600); // open the serial port at 9600 bps:

}

void loop() {

 // print labels

 Serial.print("NO FORMAT"); // prints a label

 Serial.print("\t"); // prints a tab

 Serial.print("DEC");

 Serial.print("\t");

 Serial.print("HEX");

 Serial.print("\t");

https://www.arduino.cc/reference/en/language/functions/communication/serial/write

114

 Serial.print("OCT");

 Serial.print("\t");

 Serial.print("BIN");

 Serial.println("\t"); // carriage return after the last label

 for(x=0; x< 64; x++){ // only part of the ASCII chart, change to suit

 // print it out in many formats:

 Serial.print(x); // print as an ASCII-encoded decimal - same as "DEC"

 Serial.print("\t\t"); // prints two tabs to accomodate the label lenght

 Serial.print(x, DEC); // print as an ASCII-encoded decimal

 Serial.print("\t"); // prints a tab

 Serial.print(x, HEX); // print as an ASCII-encoded hexadecimal

 Serial.print("\t"); // prints a tab

 Serial.print(x, OCT); // print as an ASCII-encoded octal

 Serial.print("\t"); // prints a tab

 Serial.println(x, BIN); // print as an ASCII-encoded binary

 // then adds the carriage return with "println"

 delay(200); // delay 200 milliseconds

 }

 Serial.println(""); // prints another carriage return

}

Notes and Warnings

As of version 1.0, serial transmission is asynchronous; Serial.print() will return before any

characters are transmitted.

Serial.println()

Description

Prints data to the serial port as human-readable ASCII text followed by a carriage return character

(ASCII 13, or '\r') and a newline character (ASCII 10, or '\n'). This command takes the same forms

as Serial.print().

Syntax

Serial.println(val)
Serial.println(val, format)

Parameters

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of decimal places (for

floating point types)

Returns

size_t: println() returns the number of bytes written, though reading that number is optional

https://www.arduino.cc/reference/en/language/functions/communication/serial/print

115

Example Code

/*

 Analog input reads an analog input on analog in 0, prints the value out.

 created 24 March 2006

 by Tom Igoe

 */

int analogValue = 0; // variable to hold the analog value

void setup() {

 // open the serial port at 9600 bps:

 Serial.begin(9600);

}

void loop() {

 // read the analog input on pin 0:

 analogValue = analogRead(0);

 // print it out in many formats:

 Serial.println(analogValue); // print as an ASCII-encoded decimal

 Serial.println(analogValue, DEC); // print as an ASCII-encoded decimal

 Serial.println(analogValue, HEX); // print as an ASCII-encoded hexadecimal

 Serial.println(analogValue, OCT); // print as an ASCII-encoded octal

 Serial.println(analogValue, BIN); // print as an ASCII-encoded binary

 // delay 10 milliseconds before the next reading:

 delay(10);

Serial.read()

Description

Reads incoming serial data. read() inherits from the Stream utility class.

Syntax

Serial.read()

Arduino Mega only:

Serial1.read()
Serial2.read()
Serial3.read()

Parameters

Nothing

Returns

The first byte of incoming serial data available (or -1 if no data is available) - int.

Example Code

int incomingByte = 0; // for incoming serial data

void setup() {

https://www.arduino.cc/reference/en/language/functions/communication/stream

116

 Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

}

void loop() {

 // send data only when you receive data:

 if (Serial.available() > 0) {

 // read the incoming byte:

 incomingByte = Serial.read();

 // say what you got:

 Serial.print("I received: ");

 Serial.println(incomingByte, DEC);

 }

}

Serial.readBytes()

Description

Serial.readBytes() reads characters from the serial port into a buffer. The function terminates if

the determined length has been read, or it times out (see Serial.setTimeout()).

Serial.readBytes() returns the number of characters placed in the buffer. A 0 means no valid

data was found.

Serial.readBytes() inherits from the Stream utility class.

Syntax

Serial.readBytes(buffer, length)

Parameters

buffer: the buffer to store the bytes in (char[] or byte[])

length : the number of bytes to read (int)

Returns

The number of bytes placed in the buffer (size_t)

Serial.readBytesUntil()

Description

Serial.readBytesUntil() reads characters from the serial buffer into an array. The function terminates

if the terminator character is detected, the determined length has been read, or it times out (see

Serial.setTimeout()). The function returns the characters up to the last character before the supplied

terminator. The terminator itself is not returned in the buffer.

Serial.readBytesUntil() returns the number of characters read into the buffer. A 0 means no

valid data was found.

https://www.arduino.cc/reference/en/language/functions/communication/serial/settimeout
https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/serial/settimeout

117

Serial.readBytesUntil() inherits from the Stream utility class.

Syntax

Serial.readBytesUntil(character, buffer, length)

Parameters

character : the character to search for (char)

buffer: the buffer to store the bytes in (char[] or byte[])

length : the number of bytes to read (int)

Returns

size_t

Serial.setTimeout()

Description

Serial.setTimeout() sets the maximum milliseconds to wait for serial data when using

serial.readBytesUntil() or serial.readBytes(). It defaults to 1000 milliseconds.

Serial.setTimeout() inherits from the Stream utility class.

Syntax

Serial.setTimeout(time)

Parameters

time : timeout duration in milliseconds (long).

Returns

Nothing

Serial.write()

Description

Writes binary data to the serial port. This data is sent as a byte or series of bytes; to send the

characters representing the digits of a number use the print() function instead.

Syntax

Serial.write(val)
Serial.write(str)
Serial.write(buf, len)

https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/serial/readbytesuntil
https://www.arduino.cc/reference/en/language/functions/communication/serial/print
https://www.arduino.cc/reference/en/language/functions/communication/serial/readbytes

118

Arduino Mega also supports:

Serial1, Serial2, Serial3 (in place of Serial)

Parameters

val: a value to send as a single byte

str: a string to send as a series of bytes

buf: an array to send as a series of bytes

Returns

size_t

write() will return the number of bytes written, though reading that number is optional

Example Code

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.write(45); // send a byte with the value 45

 int bytesSent = Serial.write(“hello”); //send the string “hello” and return

the length of the string.

}

Serial.serialEvent()

Description

Called when data is available. Use Serial.read() to capture this data.

NB : Currently, serialEvent() is not compatible with the Esplora, Leonardo, or Micro

Syntax

void serialEvent(){

//statements

}

Arduino Mega only:

void serialEvent1(){

//statements

}

void serialEvent2(){

//statements

}

void serialEvent3(){

//statements

}

119

Parameters

statements: any valid statements

Returns

Nothing

stream [Communication]

Description

Stream is the base class for character and binary based streams. It is not called directly, but invoked

whenever you use a function that relies on it.

Stream defines the reading functions in Arduino. When using any core functionality that uses a

read() or similar method, you can safely assume it calls on the Stream class. For functions like

print(), Stream inherits from the Print class.

Some of the libraries that rely on Stream include :

 Serial

 Wire

 Ethernet

 SD

Wire Library

This library allows you to communicate with I2C / TWI devices. On the Arduino boards with the

R3 layout (1.0 pinout), the SDA (data line) and SCL (clock line) are on the pin headers close to the

AREF pin. The Arduino Due has two I2C / TWI interfaces SDA1 and SCL1 are near to the AREF

pin and the additional one is on pins 20 and 21.

As a reference the table below shows where TWI pins are located on various Arduino boards.

Board I2C / TWI pins

Uno, Ethernet A4 (SDA), A5 (SCL)

Mega2560 20 (SDA), 21 (SCL)

Leonardo 2 (SDA), 3 (SCL)

Due 20 (SDA), 21 (SCL), SDA1, SCL1

https://www.arduino.cc/en/Reference/Ethernet
https://www.arduino.cc/en/Reference/SD
https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/reference/en/language/functions/communication/serial

120

As of Arduino 1.0, the library inherits from the Stream functions, making it consistent with other

read/write libraries. Because of this, send() and receive() have been replaced with read() and

write().

Note

There are both 7- and 8-bit versions of I2C addresses. 7 bits identify the device, and the eighth bit

determines if it's being written to or read from. The Wire library uses 7 bit addresses throughout. If

you have a datasheet or sample code that uses 8 bit address, you'll want to drop the low bit (i.e. shift

the value one bit to the right), yielding an address between 0 and 127. However the addresses from

0 to 7 are not used because are reserved so the first address that can be used is 8. Please note that a

pull-up resistor is needed when connecting SDA/SCL pins. Please refer to the examples for more

informations. MEGA 2560 board has pull-up resistors on pins 20 - 21 onboard.

The Wire library implementation uses a 32 byte buffer, therefore any communication should

be within this limit. Exceeding bytes in a single transmission will just be dropped.

Examples

 Digital Potentiometer: Control an Analog Devices AD5171 Digital Potentiometer.
 Master Reader/Slave Writer: Program two Arduino boards to communicate with one another in a Master

Reader/Slave Sender configuration via the I2C.
 Master Writer/Slave receiver:Program two Arduino boards to communicate with one another in a Master

Writer/Slave Receiver configuration via the I2C.
 SFR Ranger Reader: Read an ultra-sonic range finder interfaced via the I2C.
 Add SerCom : Adding mores Serial interfaces to SAMD microcontrollers.

See also

 Master Writer
 Master Reader
 SFR Ranger Reader
 Digital Potentiometer

Ethernet / Ethernet 2 library

These libraries are designed to work with the Arduino Ethernet Shield (Ethernet.h) or the Arduino

Ethernet Shield 2 and Leonardo Ethernet (Ethernet2.h). The libraries are allow an Arduino board to

connect to the internet. The board can serve as either a server accepting incoming connections or a

client making outgoing ones. The libraries support up to four concurrent connection (incoming or

outgoing or a combination). Ethernet library (Ethernet.h) manages the W5100 chip, while Ethernet2

library (Ethernet2.h) manages the W5500 chip; all the functions remain the same. Changing the

library used allows to port the same code from Arduino Ethernet Shield to Arduino Ethernet 2

Shield or Arduino Leonardo Ethernet and vice versa.

Arduino communicates with the shield using the SPI bus. This is on digital pins 11, 12, and 13 on

the Uno and pins 50, 51, and 52 on the Mega. On both boards, pin 10 is used as SS. On the Mega,

the hardware SS pin, 53, is not used to select the W5100, but it must be kept as an output or the SPI

interface won't work.

http://arduino.cc/en/Tutorial/MasterReader
http://arduino.cc/en/Tutorial/DigitalPotentiometer
https://www.arduino.cc/en/Tutorial/SFRRangerReader
http://arduino.cc/en/Tutorial/MasterWriter
https://www.arduino.cc/en/Tutorial/DigitalPotentiometer
https://www.arduino.cc/en/Tutorial/MasterWriter
https://www.arduino.cc/en/Tutorial/MasterReader
https://www.arduino.cc/en/Tutorial/SamdSercom
http://arduino.cc/en/Tutorial/SFRRangerReader

121

Examples

 ChatServer: set up a simple chat server.
 WebClient: make a HTTP request.
 WebClientRepeating: Make repeated HTTP requests.
 WebServer: host a simple HTML page that displays analog sensor values.
 BarometricPressureWebServer: outputs the values from a barometric pressure sensor as a web page.
 UDPSendReceiveString: Send and receive text strings via UDP.
 UdpNtpClient: Query a Network Time Protocol (NTP) server using UDP.
 DnsWebClient: DNS and DHCP-based Web client.

https://www.arduino.cc/en/Tutorial/UDPSendReceiveString
https://www.arduino.cc/en/Tutorial/UdpNtpClient
https://www.arduino.cc/en/Tutorial/DnsWebClient
https://www.arduino.cc/en/Tutorial/WebClient
https://www.arduino.cc/en/Tutorial/ChatServer
https://www.arduino.cc/en/Tutorial/BarometricPressureWebServer
https://www.arduino.cc/en/Tutorial/WebClientRepeating
https://www.arduino.cc/en/Tutorial/WebServer

122

 DhcpChatServer: A simple DHCP Chat Server
 DhcpAddressPrinter: Get an IP address via DHCP and print it out
 TelnetClient: A simple Telnet client

SD Library

The SD library allows for reading from and writing to SD cards, e.g. on the Arduino Ethernet

Shield. It is built on sdfatlib by William Greiman. The library supports FAT16 and FAT32 file

systems on standard SD cards and SDHC cards. It uses short 8.3 names for files. The file names

passed to the SD library functions can include paths separated by forward-slashes, /, e.g.

"directory/filename.txt". Because the working directory is always the root of the SD card, a name

refers to the same file whether or not it includes a leading slash (e.g. "/file.txt" is equivalent to

"file.txt"). As of version 1.0, the library supports opening multiple files.

The communication between the microcontroller and the SD card uses SPI, which takes place on

digital pins 11, 12, and 13 (on most Arduino boards) or 50, 51, and 52 (Arduino Mega).

Additionally, another pin must be used to select the SD card. This can be the hardware SS pin - pin

10 (on most Arduino boards) or pin 53 (on the Mega) - or another pin specified in the call to

SD.begin(). Note that even if you don't use the hardware SS pin, it must be left as an output or

the SD library won't work.

Notes on using the Library and various shields

Examples

 Card Info: Get info about your SD card.
 Datalogger: Log data from three analog sensors to an SD card.
 Dump File: Read a file from the SD card.
 Files: Create and destroy an SD card file.
 List Files: Print out the files in a directory on a SD card.
 Read Write: Read and write data to and from an SD card.

Functions

stream.available()

Description

available() gets the number of bytes available in the stream. This is only for bytes that have

already arrived.

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the Stream class main page for more information.

Syntax

stream.available()

Parameters

http://code.google.com/p/sdfatlib/
https://www.arduino.cc/en/Tutorial/Files
https://www.arduino.cc/en/Tutorial/DumpFile
https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/en/Tutorial/DhcpChatServer
https://www.arduino.cc/en/Tutorial/TelnetClient
https://www.arduino.cc/en/Tutorial/CardInfo
https://www.arduino.cc/en/Tutorial/Datalogger
https://www.arduino.cc/en/Reference/SPI
https://www.arduino.cc/en/Tutorial/listfiles
https://www.arduino.cc/en/Tutorial/ReadWrite
https://www.arduino.cc/en/Reference/SDCardNotes
https://www.arduino.cc/en/Tutorial/DhcpAddressPrinter

123

stream : an instance of a class that inherits from Stream.

Returns

int : the number of bytes available to read

stream.read()

Description

read() reads characters from an incoming stream to the buffer.

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the stream class main page for more information.

Syntax

stream.read()

Parameters

stream : an instance of a class that inherits from Stream.

Returns

The first byte of incoming data available (or -1 if no data is available).

stream.flush()

Description

flush() clears the buffer once all outgoing characters have been sent.

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the stream class main page for more information.

Syntax

stream.flush()

Parameters

stream : an instance of a class that inherits from Stream.

Returns

boolean

https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream

124

stream.find()

Description

find() reads data from the stream until the target string of given length is found The function

returns true if target string is found, false if timed out.

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the stream class main page for more information.

Syntax

stream.find(target)

Parameters

stream : an instance of a class that inherits from Stream.

target : the string to search for (char)

Returns

boolean

stream.findUntil()

Description

findUntil() reads data from the stream until the target string of given length or terminator string

is found.

The function returns true if target string is found, false if timed out

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the LANGUAGE Stream class main page for more information.

Syntax

stream.findUntil(target, terminal)

Parameters

stream.findUntil(target, terminal)

Returns

Boolean

https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream

125

stream.peek()

Description

Read a byte from the file without advancing to the next one. That is, successive calls to peek() will

return the same value, as will the next call to read().

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the Stream class main page for more information.

Syntax

stream.peek()

Parameters

stream : an instance of a class that inherits from Stream.

Returns

The next byte (or character), or -1 if none is available.

stream.readBytes()

Description

readBytes() read characters from a stream into a buffer. The function terminates if the determined

length has been read, or it times out (see setTimeout()).

readBytes() returns the number of bytes placed in the buffer. A 0 means no valid data was found.

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the Stream class main page for more information.

Syntax

stream.readBytes(buffer, length)

Parameters

stream : an instance of a class that inherits from Stream.

buffer : the buffer to store the bytes in (char[] or byte[])

length : the number of bytes to read(int)

Returns

The number of bytes placed in the buffer (size_t)

https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamsettimeout
https://www.arduino.cc/reference/en/language/functions/communication/stream

126

stream.readBytesUntil()

Description

readBytesUntil() reads characters from a stream into a buffer. The function terminates if the

terminator character is detected, the determined length has been read, or it times out (see

setTimeout()).

readBytesUntil() returns the number of bytes placed in the buffer. A 0 means no valid data was

found.

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the Stream class main page for more information.

Syntax

stream.readBytesUntil(character, buffer, length)

Parameters

stream : an instance of a class that inherits from Stream.

character : the character to search for (char)

buffer: the buffer to store the bytes in (char[] or byte[])
length : the number of bytes to `read(int)

Returns

The number of bytes placed in the buffer.

stream.readString()

Description

readString() reads characters from a stream into a String. The function terminates if it times out

(see setTimeout()).

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the Stream class main page for more information.

Syntax

stream.readString()

Parameters

Nothing

Returns

A String read from a stream.

https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamsettimeout
https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamsettimeout

127

stream.readStringUntil()

Description

readStringUntil() reads characters from a stream into a String. The function terminates if the

terminator character is detected or it times out (see setTimeout()).

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the Stream class main page for more information.

Syntax

stream.readString(terminator)

Parameters

terminator : the character to search for (char)

Returns

The entire String read from a stream, until the terminator character is detected.

stream.parseInt()

Description

parseInt() returns the first valid (long) integer number from the current position. Initial characters

that are not integers (or the minus sign) are skipped.

In particular:

 Initial characters that are not digits or a minus sign, are skipped;

 Parsing stops when no characters have been read for a configurable time-out value, or a non-digit is

read;

 If no valid digits were read when the time-out (see Stream.setTimeout()) occurs, 0 is returned;

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the Stream class main page for more information.

Syntax

stream.parseInt(list)

stream.parseInt(''list', char skipchar')

Parameters

stream : an instance of a class that inherits from Stream.

list : the stream to check for ints (char)

skipChar: used to skip the indicated char in the search. Used for example to skip thousands divider.

Returns

long

https://www.arduino.cc/reference/en/language/functions/communication/stream/streamsettimeout
https://www.arduino.cc/reference/en/language/functions/communication/stream/streamsettimeout
https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream

128

stream.parseFloat()

Description

parseFloat() returns the first valid floating point number from the current position. Initial

characters that are not digits (or the minus sign) are skipped. parseFloat() is terminated by the

first character that is not a floating point number.

This function is part of the Stream class, and is called by any class that inherits from it (Wire,

Serial, etc). See the Stream class main page for more informatio

Syntax

stream.parseFloat(list)

Parameters

stream : an instance of a class that inherits from Stream.

list : the stream to check for floats (char)

Returns

float

stream.setTimeout()

Description

setTimeout() sets the maximum milliseconds to wait for stream data, it defaults to 1000

milliseconds. This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the LANGUAGE Stream class main page for more information.

Syntax

stream.setTimeout(time)

Parameters

stream : an instance of a class that inherits from Stream. time : timeout duration in milliseconds

(long).

Returns

Nothing

https://www.arduino.cc/reference/en/language/functions/communication/stream
https://www.arduino.cc/reference/en/language/functions/communication/stream

129

USB (32u4 based boards and Due/Zero only)

Keyboard [USB]

Description

The keyboard functions enable 32u4 or SAMD micro based boards to send keystrokes to an

attached computer through their micro’s native USB port.

Note: Not every possible ASCII character, particularly the non-printing ones, can be sent with

the Keyboard library.
The library supports the use of modifier keys. Modifier keys change the behavior of another key

when pressed simultaneously. See here for additional information on supported keys and their use.

Notes and Warnings

These core libraries allow the 32u4 and SAMD based boards (Leonardo, Esplora, Zero, Due and

MKR Family) to appear as a native Mouse and/or Keyboard to a connected computer.

A word of caution on using the Mouse and Keyboard libraries: if the Mouse or Keyboard

library is constantly running, it will be difficult to program your board. Functions such as

Mouse.move() and Keyboard.print() will move your cursor or send keystrokes to a connected

computer and should only be called when you are ready to handle them. It is recommended to use a

control system to turn this functionality on, like a physical switch or only responding to specific

input you can control.

When using the Mouse or Keyboard library, it may be best to test your output first using

Serial.print(). This way, you can be sure you know what values are being reported. Refer to the

Mouse and Keyboard examples for some ways to handle this.

Functions

Keyboard.begin()

Description

When used with a Leonardo or Due board, Keyboard.begin() starts emulating a keyboard

connected to a computer. To end control, use Keyboard.end().

Syntax

Keyboard.begin()

Parameters

Nothing

Returns

Nothing

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardmodifiers
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardend

130

Example Code

#include <Keyboard.h>

void setup() {

 // make pin 2 an input and turn on the

 // pullup resistor so it goes high unless

 // connected to ground:

 pinMode(2, INPUT_PULLUP);

 Keyboard.begin();

}

void loop() {

 //if the button is pressed

 if(digitalRead(2)==LOW){

 //Send the message

 Keyboard.print("Hello!");

 }

}

Keyboard.end()

Description

Stops the keyboard emulation to a connected computer. To start keyboard emulation, use

Keyboard.begin().

Syntax

Keyboard.end()

Parameters

Nothing

Returns

Nothing

Example Code

#include <Keyboard.h>

void setup() {

 //start keyboard communication

 Keyboard.begin();

 //send a keystroke

 Keyboard.print("Hello!");

 //end keyboard communication

 Keyboard.end();

}

void loop() {

 //do nothing

}

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardbegin

131

Keyboard.press()

Description

When called, Keyboard.press() functions as if a key were pressed and held on your keyboard.

Useful when using modifier keys. To end the key press, use Keyboard.release() or

Keyboard.releaseAll().

It is necessary to call Keyboard.begin() before using press().

Syntax

Keyboard.press()

Parameters

char : the key to press

Returns

size_t : number of key presses sent.

Example Code

#include <Keyboard.h>

// use this option for OSX:

char ctrlKey = KEY_LEFT_GUI;

// use this option for Windows and Linux:

// char ctrlKey = KEY_LEFT_CTRL;

void setup() {

 // make pin 2 an input and turn on the

 // pullup resistor so it goes high unless

 // connected to ground:

 pinMode(2, INPUT_PULLUP);

 // initialize control over the keyboard:

 Keyboard.begin();

}

void loop() {

 while (digitalRead(2) == HIGH) {

 // do nothing until pin 2 goes low

 delay(500);

 }

 delay(1000);

 // new document:

 Keyboard.press(ctrlKey);

 Keyboard.press('n');

 delay(100);

 Keyboard.releaseAll();

 // wait for new window to open:

 delay(1000);

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardrelease
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardbegin
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardmodifiers
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardreleaseall

132

Keyboard.print()

Description

Sends a keystroke to a connected computer.

Keyboard.print() must be called after initiating Keyboard.begin().

Syntax

Keyboard.print(character)
Keyboard.print(characters)

Parameters

character : a char or int to be sent to the computer as a keystroke characters : a string to be sent to

the computer as a keystroke.

Returns

size_t : number of bytes sent.

Example Code

#include <Keyboard.h>

void setup() {

 // make pin 2 an input and turn on the

 // pullup resistor so it goes high unless

 // connected to ground:

 pinMode(2, INPUT_PULLUP);

 Keyboard.begin();

}

void loop() {

 //if the button is pressed

 if(digitalRead(2)==LOW){

 //Send the message

 Keyboard.print("Hello!");

 }

}

Notes and Warnings

When you use the Keyboard.print() command, the Arduino takes over your keyboard! Make sure

you have control before you use the command. A pushbutton to toggle the keyboard control state is

effective.

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardbegin

133

Keyboard.println()

Description

Sends a keystroke to a connected computer, followed by a newline and carriage return.

Keyboard.println() must be called after initiating Keyboard.begin().

Syntax

Keyboard.println()

Keyboard.println(character)+ Keyboard.println(characters)

Parameters

character : a char or int to be sent to the computer as a keystroke, followed by newline and

carriage return.

characters : a string to be sent to the computer as a keystroke, followed by a newline and carriage

return.

Returns

size_t : number of bytes sent

Example Code

#include <Keyboard.h>

void setup() {

 // make pin 2 an input and turn on the

 // pullup resistor so it goes high unless

 // connected to ground:

 pinMode(2, INPUT_PULLUP);

 Keyboard.begin();

}

void loop() {

 //if the button is pressed

 if(digitalRead(2)==LOW){

 //Send the message

 Keyboard.println("Hello!");

 }

}

Notes and Warnings

When you use the Keyboard.println() command, the Arduino takes over your keyboard! Make sure

you have control before you use the command. A pushbutton to toggle the keyboard control state is

effective.

Keyboard.release()

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardbegin

134

Description

Lets go of the specified key. See Keyboard.press() for more information.

Syntax

Keyboard.release(key)

Parameters

key : the key to release. char

Returns

size_t : the number of keys released

Example Code

#include <Keyboard.h>

// use this option for OSX:

char ctrlKey = KEY_LEFT_GUI;

// use this option for Windows and Linux:

// char ctrlKey = KEY_LEFT_CTRL;

void setup() {

 // make pin 2 an input and turn on the

 // pullup resistor so it goes high unless

 // connected to ground:

 pinMode(2, INPUT_PULLUP);

 // initialize control over the keyboard:

 Keyboard.begin();

}

void loop() {

 while (digitalRead(2) == HIGH) {

 // do nothing until pin 2 goes low

 delay(500);

 }

 delay(1000);

 // new document:

 Keyboard.press(ctrlKey);

 Keyboard.press('n');

 delay(100);

 Keyboard.release(ctrlKey);

 Keyboard.release('n');

 // wait for new window to open:

 delay(1000);

}

Keyboard.releaseAll()

Description

Lets go of all keys currently pressed. See Keyboard.press() for additional information.

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardpress
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardpress

135

Syntax

Keyboard.releaseAll()

Parameters

Nothing

Returns

Nothing

Example Code

#include <Keyboard.h>

// use this option for OSX:

char ctrlKey = KEY_LEFT_GUI;

// use this option for Windows and Linux:

// char ctrlKey = KEY_LEFT_CTRL;

void setup() {

 // make pin 2 an input and turn on the

 // pullup resistor so it goes high unless

 // connected to ground:

 pinMode(2, INPUT_PULLUP);

 // initialize control over the keyboard:

 Keyboard.begin();

}

void loop() {

 while (digitalRead(2) == HIGH) {

 // do nothing until pin 2 goes low

 delay(500);

 }

 delay(1000);

 // new document:

 Keyboard.press(ctrlKey);

 Keyboard.press('n');

 delay(100);

 Keyboard.releaseAll();

 // wait for new window to open:

 delay(1000);

}

Keyboard.write()

Description

Sends a keystroke to a connected computer. This is similar to pressing and releasing a key on your

keyboard. You can send some ASCII characters or the additional keyboard modifiers and special

keys.

Only ASCII characters that are on the keyboard are supported. For example, ASCII 8 (backspace)

would work, but ASCII 25 (Substitution) would not. When sending capital letters, Keyboard.write()

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardmodifiers
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/keyboardmodifiers

136

sends a shift command plus the desired character, just as if typing on a keyboard. If sending a

numeric type, it sends it as an ASCII character (ex. Keyboard.write(97) will send 'a').

For a complete list of ASCII characters, see ASCIITable.com.

Syntax

Keyboard.write(character)

Parameters

character : a char or int to be sent to the computer. Can be sent in any notation that’s acceptable

for a char. For example, all of the below are acceptable and send the same value, 65 or ASCII A:

Keyboard.write(65); // sends ASCII value 65, or A

Keyboard.write('A'); // same thing as a quoted character

Keyboard.write(0x41); // same thing in hexadecimal

Keyboard.write(0b01000001); // same thing in binary (weird choice, but it works)

Returns

size_t : number of bytes sent.

Example Code

#include <Keyboard.h>

void setup() {

 // make pin 2 an input and turn on the

 // pullup resistor so it goes high unless

 // connected to ground:

 pinMode(2, INPUT_PULLUP);

 Keyboard.begin();

}

void loop() {

 //if the button is pressed

 if(digitalRead(2)==LOW){

 //Send an ASCII 'A',

 Keyboard.write(65);

 }

}

Notes and Warnings

When you use the Keyboard.write() command, the Arduino takes over your keyboard! Make sure

you have control before you use the command. A pushbutton to toggle the keyboard control state is

effective.

Mouse

Description

http://www.asciitable.com/

137

The mouse functions enable 32u4 or SAMD micro based boards to control cursor movement on a

connected computer through their micro’s native USB port. When updating the cursor position, it is

always relative to the cursor’s previous location.

Notes and Warnings

These core libraries allow the 32u4 and SAMD based boards (Leonardo, Esplora, Zero, Due and

MKR Family) to appear as a native Mouse and/or Keyboard to a connected computer.

A word of caution on using the Mouse and Keyboard libraries: if the Mouse or Keyboard

library is constantly running, it will be difficult to program your board. Functions such as

Mouse.move() and Keyboard.print() will move your cursor or send keystrokes to a connected

computer and should only be called when you are ready to handle them. It is recommended to use a

control system to turn this functionality on, like a physical switch or only responding to specific

input you can control.

When using the Mouse or Keyboard library, it may be best to test your output first using

Serial.print(). This way, you can be sure you know what values are being reported. Refer to the

Mouse and Keyboard examples for some ways to handle this.

Functions

Mouse.begin()

Description

Begins emulating the mouse connected to a computer. begin() must be called before controlling

the computer. To end control, use Mouse.end().

Syntax

Mouse.begin()

Parameters

Nothing

Returns

Nothing

Example Code

#include <Mouse.h>

void setup(){

 pinMode(2, INPUT);

}

void loop(){

https://www.arduino.cc/reference/en/language/functions/usb/mouse/mouseend

138

 //initiate the Mouse library when button is pressed

 if(digitalRead(2) == HIGH){

 Mouse.begin();

 }

}

Mouse.click()

Description

Sends a momentary click to the computer at the location of the cursor. This is the same as pressing

and immediately releasing the mouse button.

Mouse.click() defaults to the left mouse button.

Syntax

Mouse.click();
Mouse.click(button);

Parameters

button: which mouse button to press - char

 MOUSE_LEFT (default)
 MOUSE_RIGHT
 MOUSE_MIDDLE

Returns

Nothing

Example Code

#include <Mouse.h>

void setup(){

 pinMode(2,INPUT);

 //initiate the Mouse library

 Mouse.begin();

}

void loop(){

 //if the button is pressed, send a left mouse click

 if(digitalRead(2) == HIGH){

 Mouse.click();

 }

}

139

Notes and Warnings

When you use the Mouse.click() command, the Arduino takes over your mouse! Make sure you

have control before you use the command. A pushbutton to toggle the mouse control state is

effective.

Mouse.end()

Description

Stops emulating the mouse connected to a computer. To start control, use Mouse.begin().

Syntax

Mouse.end()

Parameters

Nothing

Returns

Nothing

Example Code

#include <Mouse.h>

void setup(){

 pinMode(2,INPUT);

 //initiate the Mouse library

 Mouse.begin();

}

void loop(){

 //if the button is pressed, send a left mouse click

 //then end the Mouse emulation

 if(digitalRead(2) == HIGH){

 Mouse.click();

 Mouse.end();

 }

}

Mouse.move()

https://www.arduino.cc/reference/en/language/functions/usb/mouse/mousebegin

140

Description

Moves the cursor on a connected computer. The motion onscreen is always relative to the cursor’s

current location. Before using Mouse.move() you must call Mouse.begin()

Syntax

Mouse.move(xVal, yPos, wheel);

Parameters

xVal: amount to move along the x-axis - signed char

yVal: amount to move along the y-axis - signed char

wheel: amount to move scroll wheel - signed char

Returns

Nothing

Example Code

#include <Mouse.h>

const int xAxis = A1; //analog sensor for X axis

const int yAxis = A2; // analog sensor for Y axis

int range = 12; // output range of X or Y movement

int responseDelay = 2; // response delay of the mouse, in ms

int threshold = range/4; // resting threshold

int center = range/2; // resting position value

int minima[] = {

 1023, 1023}; // actual analogRead minima for {x, y}

int maxima[] = {

 0,0}; // actual analogRead maxima for {x, y}

int axis[] = {

 xAxis, yAxis}; // pin numbers for {x, y}

int mouseReading[2]; // final mouse readings for {x, y}

void setup() {

 Mouse.begin();

}

void loop() {

// read and scale the two axes:

 int xReading = readAxis(0);

 int yReading = readAxis(1);

// move the mouse:

 Mouse.move(xReading, yReading, 0);

 delay(responseDelay);

}

/*

 reads an axis (0 or 1 for x or y) and scales the

 analog input range to a range from 0 to <range>

*/

int readAxis(int axisNumber) {

 int distance = 0; // distance from center of the output range

 // read the analog input:

 int reading = analogRead(axis[axisNumber]);

https://www.arduino.cc/reference/en/language/functions/usb/mouse/mousebegin

141

// of the current reading exceeds the max or min for this axis,

// reset the max or min:

 if (reading < minima[axisNumber]) {

 minima[axisNumber] = reading;

 }

 if (reading > maxima[axisNumber]) {

 maxima[axisNumber] = reading;

 }

 // map the reading from the analog input range to the output range:

 reading = map(reading, minima[axisNumber], maxima[axisNumber], 0, range);

 // if the output reading is outside from the

 // rest position threshold, use it:

 if (abs(reading - center) > threshold) {

 distance = (reading - center);

 }

 // the Y axis needs to be inverted in order to

 // map the movemment correctly:

 if (axisNumber == 1) {

 distance = -distance;

 }

 // return the distance for this axis:

 return distance;

}

Notes and Warnings

When you use the Mouse.move() command, the Arduino takes over your mouse! Make sure you

have control before you use the command. A pushbutton to toggle the mouse control state is

effective.

Mouse.press()

Description

Sends a button press to a connected computer. A press is the equivalent of clicking and

continuously holding the mouse button. A press is cancelled with Mouse.release().

Before using Mouse.press(), you need to start communication with Mouse.begin().

Mouse.press() defaults to a left button press.

Syntax

Mouse.press();
Mouse.press(button)

Parameters

button: which mouse button to press - char

 MOUSE_LEFT (default)
 MOUSE_RIGHT
 MOUSE_MIDDLE

https://www.arduino.cc/reference/en/language/functions/usb/mouse/mousebegin
https://www.arduino.cc/reference/en/language/functions/usb/mouse/mouserelease

142

Returns

Nothing

Example Code

#include <Mouse.h>

void setup(){

 //The switch that will initiate the Mouse press

 pinMode(2,INPUT);

 //The switch that will terminate the Mouse press

 pinMode(3,INPUT);

 //initiate the Mouse library

 Mouse.begin();

}

void loop(){

 //if the switch attached to pin 2 is closed, press and hold the left mouse

button

 if(digitalRead(2) == HIGH){

 Mouse.press();

 }

 //if the switch attached to pin 3 is closed, release the left mouse button

 if(digitalRead(3) == HIGH){

 Mouse.release();

 }

}

Notes and Warnings

When you use the Mouse.press() command, the Arduino takes over your mouse! Make sure you

have control before you use the command. A pushbutton to toggle the mouse control state is

effective.

Mouse.release()

Description

Sends a message that a previously pressed button (invoked through Mouse.press()) is released.

Mouse.release() defaults to the left button.

Syntax

Mouse.release();
Mouse.release(button);

Parameters

button: which mouse button to press - char

 MOUSE_LEFT (default)
 MOUSE_RIGHT
 MOUSE_MIDDLE

Returns

https://www.arduino.cc/reference/en/language/functions/usb/mouse/mousepress

143

Nothing

Example Code

#include <Mouse.h>

void setup(){

 //The switch that will initiate the Mouse press

 pinMode(2,INPUT);

 //The switch that will terminate the Mouse press

 pinMode(3,INPUT);

 //initiate the Mouse library

 Mouse.begin();

}

void loop(){

 //if the switch attached to pin 2 is closed, press and hold the left mouse

button

 if(digitalRead(2) == HIGH){

 Mouse.press();

 }

 //if the switch attached to pin 3 is closed, release the left mouse button

 if(digitalRead(3) == HIGH){

 Mouse.release();

 }

}

Notes and Warnings

When you use the Mouse.release() command, the Arduino takes over your mouse! Make sure

you have control before you use the command. A pushbutton to toggle the mouse control state is

effective.

Mouse.isPressed()

Description

Checks the current status of all mouse buttons, and reports if any are pressed or not.

Syntax

Mouse.isPressed();
Mouse.isPressed(button);

Parameters

When there is no value passed, it checks the status of the left mouse button.

button: which mouse button to check - char

 MOUSE_LEFT (default)
 MOUSE_RIGHT
 MOUSE_MIDDLE

Returns

boolean : reports whether a button is pressed or not.

144

Example Code

#include <Mouse.h>

void setup(){

 //The switch that will initiate the Mouse press

 pinMode(2,INPUT);

 //The switch that will terminate the Mouse press

 pinMode(3,INPUT);

 //Start serial communication with the computer

 Serial1.begin(9600);

 //initiate the Mouse library

 Mouse.begin();

}

void loop(){

 //a variable for checking the button's state

 int mouseState=0;

 //if the switch attached to pin 2 is closed, press and hold the left mouse

button and save the state ina variable

 if(digitalRead(2) == HIGH){

 Mouse.press();

 mouseState=Mouse.isPressed();

 }

 //if the switch attached to pin 3 is closed, release the left mouse button and

save the state in a variable

 if(digitalRead(3) == HIGH){

 Mouse.release();

 mouseState=Mouse.isPressed();

 }

 //print out the current mouse button state

 Serial1.println(mouseState);

 delay(10);

}

